
UCI-ISR-05-8 - May 2005

 1

A Survey of Versatility for Publish/Subscribe Infrastructures

Roberto S. Silva Filho and David F. Redmiles
Donald Bren School of Information and Computer Sciences

University of California, Irvine
Irvine, CA 92697-3430 USA

{rsilvafi, redmiles}@ics.uci.edu

Abstract
Current publish/subscribe middleware infrastructures fall short of mechanisms that allow
their customization and configuration to comply with the requirements of different appli-
cation domains. This shortcoming is a consequence of their original design which does
not account for mechanisms or approaches that allow the evolution of this kind of ser-
vices.

This survey introduces the concept of versatility in publish/subscribe infrastructures and
examines the current approaches to versatility in publish-subscribe middleware as well
as approaches to versatility that have been applied in other kinds of middleware and may
possibly succeed in the context of publish/subscribe infrastructures.

In this context, versatility is defined as a set of properties (such as variability, reuse, dy-
namism and usability) that allows the customization, extension and compression of mid-
dleware. This paper surveys existing and advanced software engineering approaches to
address those requirements. A comparative framework on software versatility, as a set of
properties, is presented to help researches and practitioners to evaluate and compare the
strengths and limitations of such approaches that have been or might be applied to this
problem. Our goal is not to compare the approaches with one another, but to show how
those approaches can be used to provide some of the versatility properties we identify. An
agenda for future research in this topic is also presented.

This survey addresses the following questions: What is versatility? How is versatility de-
fined in the context of publish/subscribe middleware? Which software engineering tech-
niques have been used to provide versatility to middleware in general, and specifically to
publish/subscribe middleware? What other techniques may be used to approach this
problem? What are their limitations and strengths? What are some of the important open
research questions in this area?

Keywords
Middleware versatility, publish/subscribe, software engineering, variability

UCI-ISR-05-8 - May 2005

 2

1 Contents
Survey of Versatility for Publish/Subscribe Infrastructures ... 1
Keywords ... 1
1 Contents.. 2

1.1 Table Index .. 4
1.2 Figure Index ... 4

2 Introduction .. 5
3 Goals and research method... 6
4 Application scope and motivation scenarios .. 7
5 Background and definitions.. 8

5.1 The many flavors of publish/subscribe .. 10
5.1.1 Tuple spaces (or tuple-oriented middleware) ... 10
5.1.2 Message-Oriented Middleware... 11
5.1.3 Event-based languages and infrastructures... 13
5.1.4 Active database systems ... 14

5.2 Publish/subscribe design dimensions ... 14
6 Software Versatility.. 17

6.1 Versatility framework for publish/subscribe infrastructures .. 18
7 Survey of existing software versatility approaches .. 19

7.1 Classification framework ... 20
7.2 Object-oriented programming languages ... 21
7.3 Software Frameworks .. 22
7.4 Software patterns.. 24
7.5 Program transformations .. 25

7.5.1 Source code refactoring .. 26
7.6 Component-based software development approaches.. 27

7.6.1 Classical component-based approach – Toolkits and component libraries........................... 27
7.6.2 Plug-in based software development .. 29
7.6.3 Extensible programming languages.. 32

7.7 Open Implementations ... 34
7.8 Computational reflection (meta-level programming)... 36
7.9 Feature-oriented programming... 38

7.9.1 Aspect-oriented programming (AOP) .. 38
7.9.2 Composition Filters .. 41
7.9.3 GenVoca (Stepwise refinement)... 43
7.9.4 Discussion... 45

7.10 Software Usability techniques... 45
7.10.1 API evaluation techniques .. 46
7.10.2 API design guidelines and principles.. 47
7.10.3 Usability aspect of software versatility techniques... 47

7.11 Versatility techniques summary .. 48
8 Other versatility approaches ... 49

8.1 Model-driven approaches... 49
8.2 Service-oriented architectures .. 50

9 Survey of existing publish/subscribe infrastructures .. 50
9.1 CORBA-NS ... 51
9.2 Java Message Service (JMS).. 51
9.3 READY.. 52
9.4 Siena... 52
9.5 Herald... 53
9.6 Elvin... 54
9.7 Gryphon ... 54
9.8 JEDI ... 55

UCI-ISR-05-8 - May 2005

 3

9.9 CASSIUS ... 55
9.10 KHRONIKA.. 56
9.11 GEM.. 57
9.12 YEAST.. 57
9.13 TSpaces from IBM .. 58
9.14 The Modular Event System... 59
9.15 Flexible Notification Framework (FNF) ... 60
9.16 FULCRUM.. 61
9.17 ADEES.. 62
9.18 The programmable event-based kernel.. 63
9.19 FACET .. 64
9.20 YANCEES .. 64
9.21 Other publish/subscribe infrastructures ... 65

10 Analysis of publish/subscribe infrastructures according to their versatility................................... 65
10.1 Specialized notification servers ... 67
10.2 Minimal core infrastructures ... 68
10.3 One-size-fits-all implementations.. 68
10.4 Domain-specific versatile notification servers .. 68
10.5 Generally versatile notification servers ... 69

11 Promising research topics... 70
12 Conclusions.. 71
Acknowledgements .. 73
References .. 73

UCI-ISR-05-8 - May 2005

 4

1.1 Table Index
Table 1 Publish/subscribe infrastructures design framework, their dimensions and examples. 16
Table 2 OO Programming summary .. 22
Table 3 Software frameworks summary... 24
Table 4 Software patterns summary ... 25
Table 5 Software refactoring summary .. 27
Table 6 Meta-level programming summary ... 38
Table 7 Open implementation summary... 36
Table 8 Aspect-oriented programming summary ... 41
Table 9 Composition filters summary .. 43
Table 10 Mixins summary.. 45
Table 11 Classical component-based summary.. 29
Table 12 Plug-in based software development summary ... 32
Table 13 Extensible programming languages summary... 34
Table 14 Summary of versatility techniques .. 48
Table 15 Design dimensions for the CORBA Notification Service ... 51
Table 16 Design dimensions for the Java Message Service ... 52
Table 17 Design dimensions for the READY Notification Service ... 52
Table 18 Design dimensions for the Siena Notification Service .. 53
Table 19 Design dimensions for Herald ... 53
Table 20 Design dimensions for Elvin ... 54
Table 21 Design dimensions for Gryphon.. 55
Table 22 Design dimensions for JEDI.. 55
Table 23 Design dimensions for CASSIUS.. 56
Table 24 Design dimensions for KHRONIKA... 56
Table 25 Design dimensions for GEM ... 57
Table 26 Design dimensions for YEAST ... 58
Table 27 Design dimensions for TSpaces .. 59
Table 28 Design dimensions for the Modular Event System ... 60
Table 29 Design dimensions for the Flexible Notification Framework.. 61
Table 30 Design dimensions for FULCRUM... 62
Table 31 Design dimensions for ADEES ... 63
Table 32 Design dimensions for the programmable event-based kernel .. 63
Table 33 Design dimensions for FACET ... 64
Table 34 Design dimensions for YANCEES.. 65
Table 35 List of publish/subscribe infrastructures and their versatility approaches 66
Table 36 Summary of most popular versatility approaches for publish/subscribe infrastructures 70

1.2 Figure Index
Figure 1 Basic components in a distributed publish/subscribe system. .. 9
Figure 2: Topic or channel-based routing... 12
Figure 3 Content-based routing network .. 13
Figure 4 Example of an Aspect defined in AspectJ ... 39
Figure 5 Eclipse Platform Architecture (extracted from (International 2003) Figure 2) 31

UCI-ISR-05-8 - May 2005

 5

2 Introduction
Publish/subscribe infrastructures (or publish/subscribe for short) are message-oriented middle-

ware (or MOMs) that implement the publish/subscribe architectural style. This architectural style
provides an inherent loose coupling communication mechanism between information publishers
and consumers, which defines clear separation of communication from computation and carries
the potential for easy integration of autonomous, heterogeneous components into complex sys-
tems that are easy to evolve and scale (Dingel, Garlan et al. 1998). They also provide a one-to-
many communication mechanism with which multicast and broadcast-based applications can be
implemented.

For such characteristics, they have been used as the basic communication and integration infra-
structure for many application domains such as software monitoring, awareness, enterprise inte-
gration, groupware, distributed user monitoring and so on. This wide range of applications had
required new services from the infrastructure such as advanced event processing (event sequence
detection, abstraction, and summarization); event persistency, mobility support, transactions, se-
curity communication channels, and a whole new set of domain-specific features. As a conse-
quence, in spite of the availability of standardized solutions such as CORBA-NS (CORBA Noti-
fication Service) (OMG 2002) or JMS (Java Message Service) (SUN 2003), new notification
servers continue to be developed to address the needs of novel applications such as user and soft-
ware monitoring (Hilbert and Redmiles 1998), groupware (Dourish and Bly 1992), collaborative
software engineering (Sarma, Noroozi et al. 2003), workflow management systems and mobile
applications (Cugola, Nitto et al. 2001), among others.

In this context, the proliferation of specialized solutions reveals limitations on the way event-
based infrastructures are being designed and implemented. First and foremost, the pub-
lish/subscribe paradigm appears seductively simple. A basic service can be programmed quickly
before the complexities of the application it serves reveal themselves. Then, when complexities
manifest, they require significant extensions already implemented in existing, sophisticated infra-
structures. A second deterrent is that current publish/subscribe infrastructures are not designed to
be extensible nor programmable, which hinders the addition or customization of new application
services. For instance, CORBA-NS does not support event source discovery protocols, such as
those provided by CASSIUS (Kantor and Redmiles 2001). The implementation of this feature
using CORBA-NS would require the direct change of the publish/subscribe service source code
or even aspects of the client application. Third, with rare exceptions such as the READY (Gruber,
Krishnamurthy et al. 1999) (a CORBA compliant notification service), current solutions are not
configurable with respect to the place where event processing happens in a distributed setting, a
feature important in some application domains. For instance, some applications such as software
monitoring (Hilbert and Redmiles 1998), require the execution of event processing on the appli-
cation side where the events are collected, whereas applications running on mobile devices may
need a restricted set of services and components. Forth, with the proliferation of specialized mid-
dleware, interoperability becomes a problem. In large organizations, for the reasons previously
mentioned, it is common to find different event-driven applications, designed for specific pur-
poses, that rely on different event-based infrastructures. Due to differences in purpose and scale,
they usually do not interoperate. For example, server monitoring applications, e-mail servers,
workflow management systems and so on, that do not share a common data format, data schema
or even computing platform. Finally, with the exception of a few research prototypes such as
YANCEES (Silva-Filho, Souza et al. 2004) and some others, none of existing event-based mid-
dleware approaches support a more generalized selection and customization of features that the
publish/subscribe infrastructure should provide.

UCI-ISR-05-8 - May 2005

 6

Those limitations motivated our survey of existing software engineering techniques and ap-
proaches that have been or can be used to provide versatility to publish/subscribe infrastructures.
The term versatility was chosen to embrace the set of good software engineering requirements
that would improve the support for customization and evolution of publish/subscribe middleware.
Our concept of versatility is a combination of the following software properties: extensibility,
programmability, reuse, dynamic and static variability and usability.

Hence, in this survey, we present the concept of versatility and classify existing systems ac-
cording to this new concept. We also survey existing software engineering versatility techniques
and present their strengths and limitations, discussing how they can be applied to address some of
the versatility properties in the context of publish/subscribe infrastructures. We expect with that
to provide a framework that allows software engineering practitioners and researches to choose
one or another according to their needs.

In the next section, we present our goals and research methods in the preparation of this survey.
In section 0 we motivate and scope our problem by presenting three application scenarios that
require different services from the publish/subscribe infrastructure. Section 6 provides an over-
view of publish/subscribe technology and some background in the area of publish/subscribe infra-
structures. Section 6 defines our concept of software versatility in terms of good software quali-
ties. Section 7 surveys existing software engineering, architectures and applications that can be
used to address the versatility properties from section 6. Section 8 presents some related tech-
niques. After that, section 10 surveys existing publish/subscribe infrastructures, both versatile and
non-versatile systems. Section 11 correlates the existing publish/subscribe infrastructures with
some of the versatility approaches presented in section 6. After that, section 12 briefly presents
some promising research topics. Finally, section 12 draws some conclusions and observations
resulting from this survey.

3 Goals and research method
The fundamental goal of this survey is to identify and motivate the need for versatility in pub-

lish/subscribe infrastructures, and define versatility in terms of key properties the pub-
lish/subscribe infrastructure must provide, pointing possible approaches to the problem. In order
to do so, we divide this survey in two main parts:

In the first part, we enlist a set of software versatility approaches that have been or may be used
in publish/subscribe domain. Whenever possible, we present examples and relate to existing pub-
lish/subscribe infrastructures. The goal of this first part is to help middleware researchers, design-
ers and practitioners to categorize, evaluate, and compare the strengths and limitations of those
approaches, when applying them to the publish/subscribe problem.

In the second part, we survey existing publish/subscribe infrastructures, identifying how they
address the versatility properties we propose. Because the survey of all existing systems and
technologies is impossible, a representative set of each class of system is presented. For such, we
attempt to present those systems according to their most prominent characteristics, thus dividing
them in more or less natural categories at the end of the survey.

In the realization of this survey, we first searched the existing literature and the web for both
industrial and scientific publications on publish/subscribe infrastructures, paying special attention
on how they can be used to support the requirements of different application domains, and which
mechanisms they provide to address the versatility properties we propose. Then, we identified the
need for versatility in publish/subscribe middleware as a set of good software engineering quali-
ties a system must have in order to better support its evolution, configuration, programmability
and usability.

UCI-ISR-05-8 - May 2005

 7

After surveying existing systems and identifying how they address the versatility issues, the ex-
isting literature was searched for existing software engineering techniques and programming lan-
guage approaches that are being used in middleware other than publish/subscribe, or even tech-
niques we think can be used to provide those qualities to publish/subscribe infrastructures. As a
result, a matrix was built where we compared the characteristics of current publish/subscribe in-
frastructures with the versatility qualities that we propose, showing how those systems provide
such properties. The resulting matrix allows the identification of main limitations in current infra-
structures, and allows the visualization of areas which further research is necessary. Throughout
the survey, a set of tables were build which list the each versatility approach and explains how
they can address the versatility requirements we propose. The resulting set of tables allow the
visualization of techniques that can be applied or tested in the implementation of the versatility
properties in the context of publish/subscribe infrastructures.

4 Application scope and motivation scenarios
In order to understand the kinds of infrastructures we are interested in surveying, we list three

examples of applications in different domains such as: software monitoring (EDEM), awareness-
based applications (CASSIUS), and peer-to-peer synchronous collaborative environments, and
briefly describe how publish/subscribe infrastructures are used in those domains. The goal is to
give the reader a feeling of the set of requirements those systems need to support.

First, the EDEM (Expectation Driven Event Monitoring) system (Hilbert and Redmiles 1998)
is a user interface monitoring tool. In EDEM, events collected from end-user‘s interaction with
the system are intercepted and compared with expected use scenarios. Those scenarios are de-
fined by the application developers and described in terms of user interface event sequences.
They are deployed with the final application instrumented with EDEM, which monitors the appli-
cation and detects whenever those expectations are broken. The results are then sent back to the
developers using the Internet, for further analysis. In this application, the event processing and the
notification delivery are all performed in the application site, whereas expectations represented as
agents (or subscriptions) are deployed to that site. Thus, there is no central server, and few data is
transmitted through the network. The event processing language is complex and requires ad-
vanced event correlation features as event summarization, event abstraction (generation of events
in response to a pattern detection) and sequence detection.

In another example, the CASSIUS notification server (Kantor and Redmiles 2001) is used as an
awareness information router and integrator. Events are collected from many sources possibly
including sensors, application execution traces, webcams and others, and are delivered to inter-
ested parties based on different policies (subscriptions), where they can be used to implement dif-
ferent awareness visualizations and mechanisms. A distinctive feature of CASSIUS is its ability
to define event hierarchies, and collect information about event sources, allowing end-users to
browse through different event sources and hierarchy spaces when building their subscriptions.
Another important feature is persistency, the ability to store events in different user accounts for
further reference, coping with mobility and disconnection of clients. Hence, in this application,
the architecture is centralized, subscriptions are based on event sources and types, and the event’s
content is multi-modal. Events are less frequent and more diverse in their content, if compared to
the software monitoring scenario.

In a third example, we need to support a peer-to-peer file sharing tool where security visualiza-
tions are used to help end users assess their current security (DePaula, Ding et al. 2005). In this
application, an ad-hoc collaboration tool is built on top of a peer-to-peer publish/subscribe infra-
structure able to collect events from distributed WebDAV repositories and to synchronize the
GUI visualization as file visibility properties are changed (read only, read-write, full control and

UCI-ISR-05-8 - May 2005

 8

so on). In this context, events are used to leverage security awareness. They provide insight about
the application execution and allow end-users to assess the security of the system, visualizing in-
teractions in the shared artifacts as they collaborate. In this scenario, the publish/subscribe infra-
structure is decentralized (Peer-to-Peer), and need to execute in small devices such as palm-size
computers, that perform “real-time” visualizations. The event frequency is high, and their content
is small (representing Web-DAV access events such as PUT, GET, PROPFIND, PROPPATH,
and so on). Events also indicate changes in the user interface such as drag and drop of files,
changes in visibility and others.

Other examples include application sharing, software monitoring (Naslavsky, Silva Filho et al.
2004), and awareness in general. On all these scenarios, our challenge is to use a single pub-
lish/subscribe infrastructure to provide the functionality demanded by each one of those applica-
tions, and to be able to evolve in order to address new applications to come.

Hence, our main motivating problem and scope of this survey is study how to provide versatil-
ity to publish/subscribe infrastructures that are used for information integration and communica-
tion in collaborative settings. We want an infrastructure that is able to integrate and process in-
formation from different sources, and deliver this information to different interested parties in a
variety of ways. Moreover, we want the infrastructure to be customizable and extensible to ad-
dress the requirements of different application domains. Considering these goals, pub-
lish/subscribe infrastructures are appealing to our research for their ability to isolate producers
and consumers of information, for their scalability in the sense of supporting many information
producers and consumers, and the ability to process those events into higher-level pieces of in-
formation. The challenge, however, is to support the specific requirements of each one of those
applications in a common infrastructure that can be adapted, extended and customized for their
needs, without loosing its integration and interoperability characteristic. Those requirements are
usually associated to the subscription and notification languages, as well as the event representa-
tion and different infrastructure and interaction protocols.

5 Background and definitions
This section serves two purposes: first it introduces publish/subscribe infrastructures, their

main characteristics and components such as “notification service”, “publishers”, “subscribers”,
“events”, “notifications” and so forth; Second it analytically describes the main components of
such systems with respect to a proposed design framework, allowing a better comprehension of
the publish/subscribe technology and the main characteristics of the systems it provides.

Middleware refers to the software layer, between applications and the network protocols, that
supports software engineers in developing distributed applications. Historically, middleware has
been used to address issues related to heterogeneity, communication, and distribution of software
components, relieving software engineers from the burden of solving low-level, network issues,
such as lower-level communication protocols, concurrency control, transaction management, dis-
tributed object location, among others. Thus, middleware allows software engineers to focus on
the actual application requirements, relieving them from communication and coordination details,
which facilitates the development of high-quality software with less coding (Emmerich 2000).
Because of these advantages, middleware such as RPC (Remote Procedure Call) and TP (Trans-
action Processing) monitors had become very popular. In fact, in recent years, other standardized
solutions such as the OMG CORBA (Common Object Request Broker Architecture) (Siegel
1998) and SUN JMS (Java Message Service) (Sun Microsystems 2003) along with their many
implementations have been used as a basic platforms for the development of a large spectrum of
distributed applications. While CORBA defines a standard object-oriented communication broker
based on a distributed implementation of the remote method invocation paradigm (the IIOP –

UCI-ISR-05-8 - May 2005

 9

Internet Inter-Orb Protocol), JMS and their implementations are examples of message-oriented
middleware (or MOM in short), which main goal is to integrate components in a distributed sys-
tem through the exchange of asynchronous messages (that usually represent system or “real
world” events). In this survey, we are interested in the former technology, i.e. publish/subscribe
infrastructures.

A publish/subscribe service implements a distributed publish/subscribe architectural style. It
provides a logically centralized service that mediates the communication between publishers and
consumers of information in distributed system. Applications that are built upon this architectural
style are also known as event-driven applications. In these systems, some components (or infor-
mation producers) announce (or broadcast) events, while other components (information consum-
ers) advertise their interest in these events. This is performed by means of subscriptions. In this
survey, the word subscription denotes the act of expressing interest on some specific content,
which can be performed in different ways such as: opening a communication channel between
two or more parties, posting a filter expression, defining rules and queries on parts of this infor-
mation content, becoming part of a group where this content is produced, and many other ways.
Subscriptions may be revoked by an unsubscribe command or similar operation, and can be
changed by unsubscribing the existing one and posting a new one or similar approaches. An event
expresses a state change in a (possibly distributed) component, or represents some temporal fact
in the world. An event is computationally expressed in the form of a message, which conveys
content or information about this event. Hence, a message can have different representations,
such as plain text, programming language records, objects, tuples (attribute/value pairs) and so
on. On the course of this survey, we use the terms events and messages interchangeably, referring
to their computational representation.

As illustrated in Figure 1, a publish/subscribe service (a.k.a. notification service) is responsible
for receiving: (1) subscriptions, coming from event consumers, and (2) events, coming from their
producers. With these two sets of information, it efficiently performs the matching of subscrip-
tions with their corresponding subset of events, routing the resulting events, as notifications, to
the interested parties.

Notification
Service

Notification
Service

Producer 1

Producer 2

Producer 3

Consumer A

Consumer B

event

event

event

subscribe

subscribe

notification

notification
Figure 1 Basic components in a distributed publish/subscribe system.

From the software architectural point of view, event notification services provide a logically
centralized service, which is usually implemented by a single server or a set of federated servers.
Since all communication is mediated by this service, it represents a loosely coupled and asyn-
chronous communication mechanism that facilitates the one-to-many or many-to-many combina-
tion and routing of information between heterogeneous components. As a result, this communica-
tion paradigm provides interesting characteristics to the applications such as: the interacting par-

UCI-ISR-05-8 - May 2005

 10

ties do not need to know each other (publisher and subscriber anonymity), which provides loca-
tion transparency for both producers and consumers; publishers and subscribers do not need to be
up at the same time (time decoupling), and the publishing and subscription of events do not block
participants (decoupling with respect to event flow). For such characteristics, the pub-
lish/subscribe paradigm has been largely used for application-level communication and informa-
tion systems integration.

Another interesting characteristic of the publish/subscribe paradigm is the diversity that exists
in the way the users interact with the system: the way users can publish events, express their in-
terest, and specify how notifications are delivered. In other words, differently from more popular
forms of interaction as remote method invocation (RMI) or remote procedure calls (RPC), which
rely on pure programmatic interfaces, publish/subscribe infrastructures can support different in-
teraction languages, have events represented in different formats: records, objects, text; can de-
fine different notification policies: push, pull, program executions, window pop-ups, and usually
support rich subscription languages that are, in many cases, application-specific. The next session
motivates all those differences, and shed some light in the diversity existent in current pub-
lish/subscribe infrastructures, and the concerns one should have on designing those systems.

5.1 The many flavors of publish/subscribe
Publish/subscribe infrastructures evolved over time, incorporating new functionality and inter-

action models. They also became specialized, being applied in different application domains
(Baldoni, Contenti et al. 2003). Among the first systems to employ the idea of publication and
subscription of information were tuple spaces. They were created in response to the need for scal-
able mechanisms to support concurrent inter-process communication in distributed systems. More
recently, both commercial and research MOMs and content-based routing networks have been
developed and are being employed in different application domains.

5.1.1 Tuple spaces (or tuple-oriented middleware)
The Tuple space concept was originally proposed by Gelernter as part of the Linda coordina-

tion language (Gelernter 1985). A tuple space provides a persistent and shared memory (or
space), accessed through an API that allows distributed processes to read, write and remove in-
formation represented as tuples (type, attribute, value pairs). In the Linda system, tuples can be
concurrently read or removed from the space by different processes. In this programming para-
digm, concurrency and interoperability mechanisms can be easily implemented, as well as well as
more advanced communication and coordination mechanisms such as distributed queues and
locks. Queries on the tuple space can also be defined, allowing interested processes (subscribers)
to retrieve existing tuples or to block until tuples matching this query are added to the space.
Those queries are type-based (also known as templates or anti-tuples). A template matches a tuple
if both have an equal number of fields and each template field matches the corresponding tuple
field. Those two mechanisms combined provide a powerful publish/subscribe semantics to this
model.

Current examples of systems that implement this model are IBM TSpaces (Wyckoff 1998) and
JavaSpaces (Freeman, Hupfer et al. 1999) from Sun. IBM TSpaces, for example, combines the
traditional Linda API with DBMS features such as transactional semantics, database indexing,
dynamically modified behavior (download and installation of new data types to tuples and new
operators); transactional semantics allowing, for example roll-back of operations, access control,
and event notification (applications can register to be notified whenever the tuple space is
changed.

UCI-ISR-05-8 - May 2005

 11

For having the characteristics presented here, tuple spaces fill the gap between message-
oriented middleware and database systems. For not adhering to a fixed database schema, it is
more flexible, since it does not restrict the format of the tuples stored nor the types of data the
tuple space contains. At the same time, they provide all the assynchronicity and anonymity of
publish/subscribe middleware, working as an inter-process communication and the basis for par-
allel programming and artificial intelligence techniques. For such characteristic, it’s becoming
more and more popular in mobile and ubiquitous computing applications.

5.1.2 Message-Oriented Middleware
With the popularization of the Internet and the need for scalable infrastructures for enterprise

integration, Message-Oriented Middleware (or MOMs) became very popular. They provide a
communication infrastructure based on messages (or events), operating as a communication me-
dium between publishers and subscribers. As opposed to the tuple-space model, which was origi-
nally developed for inter-process communication and synchronization, by means of a shared per-
sistent data space, MOMs are designed for integration of processes by means of efficient message
routing mechanisms. As a consequence, the message persistency is usually optional, and issues
such as scalability and efficient delivery of messages are prominent in these systems. In fact, re-
cent studies show that the tuple-space model can be reduced to the publish/subscribe message-
oriented model, whereas the reverse is not true. (Zavattaro and Busi 2001). But, due to scalability
concerns, the message-oriented publish/subscribe model is preferable for Internet-scale applica-
tions.

In spite of their diversity, current MOMs can be subdivided in two main categories, if consid-
ered the way consumers express interest in the events of the system, and how these events are
routed from their producers to the respective consumers. In the first (and earliest) category, the
event dispatching mechanisms is either group based (also known as channel-based) or subject-
based (also known as topic-based). In the second more recent approach, the routing is performed
according to the whole event content, and is called content-based routing.

Channel (or queue) and subject (or topic)-based routing

In the first category, the difference between subject and group is just implementation related. In
the group (or queue)-based approach, producers broadcast events to groups, queues or channels,
whereas consumers subscribe to one or more of these channels to receive events. In the topic (or
subject)-based approach, publishers are required to annotate each event with a special field, usu-
ally a string, called subject (or topic) which describes its content. Information consumers specify
their subscriptions based on this specific field. Both approaches are depicted in Figure 2 as fol-
lows.

UCI-ISR-05-8 - May 2005

 12

queuequeue ���������������	

sends
consumes

ack

msg
msg

topictopic

delivers

filters

delivers

filters

��������

�������	

�������

sends

msg

msg

msg

Figure 2: Topic or channel-based routing

In a queue-based model, the interaction is usually peer-to-peer: events sent by one client are

routed to another client of the service through a communication queue. In a topic-based style, the
communication is many-to-many, and filtering can be applied to distinguish one topic from an-
other. Both provide asynchronous interaction channels between processes and a central service
mediates the creation of a communication channel or queue between processes before they can
start exchanging messages. This approach copes with the scalability requirements of the applica-
tion domains that use this technology, which favor efficient routing algorithms instead of expres-
sive event processing capability.

Examples of queue-based systems include the Microsoft® Message Queuing (MSMQ)
(Microsoft 2003), SonicMQ (Sonic 2003) and IBM MQSeries (IBM 2003); as well as the JMS
(Java Message Service API) (SUN 2003) specification from SUN Microsystems. In those sys-
tems, the communication channel becomes a first-class entity where functionality such as mes-
sage persistency, transactions, cryptography and secure channels, load balancing, scalability sup-
port, XML messages; guaranteed message delivery and others can be provided.

Content-based routing

Recently, a second and more general category of publish/subscribe infrastructures have been
developed. They employ an event dispatching mechanism known as content-based routing (or
dispatching) (Carzaniga and Wolf 2001). Content-based services allow event consumers to de-
scribe advanced queries over the whole content of an event or sets of events. A network of feder-
ated servers (or routers) ensure that events published in one end of the network arrive to another
end where the subscription was posted. A network of content-based routers with a publisher (cli-
ent 1) and two subscribers (client 3 and client 2) is presented in Figure 3. For their sophistication
and generality these systems usually face a trade-off between expressiveness and efficiency
(Carzaniga, Rosenblum et al. 1999). They usually have to process, route and combine events
coming from different sources. Examples of such systems include Siena (Carzaniga, Rosenblum
et al. 2001), Jedi (Cugola, Nitto et al. 2001), Gryphon(Banavar, Chandra et al. 1999; Banavar,
Chandra et al. 1999), Herald (Cabrera, Jones et al. 2001) and Elvin (Fitzpatrick, Mansfield et al.
1999).

UCI-ISR-05-8 - May 2005

 13

�����

�����

�����

�����

�����

delivers

subscribes

�������	

msg

�������	

msg

publishes

msg

msg

delivers

subscribes

�������

Figure 3 Content-based routing network

5.1.3 Event-based languages and infrastructures
In a way orthogonal to the generalized message routing, subscription and event representation

approaches that we just described, different infrastructures and languages build upon the conven-
tional publish/subscribe paradigm in order to provide application specific infrastructures. Those
systems include notification servers as CASSIUS (Kantor and Redmiles 2001) and KHRONIKA
(Lövstrand 1991), and specialized event processing languages such as GEM (Mansouri-Samani
and Sloman 1997) and YEAST (Krishnamurthy and Rosenblum 1995).

Notification servers

Notification servers, as defined by Patterson et al. (Patterson, Day et al. 1996), provide a sim-
ple common service for sharing state in synchronous multi-user applications. They have their ap-
plication in the support for groupware applications in collaborative contexts, and address the
problem of maintaining consistency in collaborative applications and supporting awareness. In
this sense, they are similar to tuple spaces, with the addition of specialized services for managing
the event space and for supporting different notification policies, required to improve all sorts of
activity awareness.

Examples of such systems include CASSIUS and KHRONIKA, which handle events as persis-
tent and shared pieces of information about the objects involved in collaborative sessions. In this
example, both systems break the publisher/subscriber isolation, allowing the discovery of infor-
mation providers. They also are able to group events in hierarchies, allowing the classification
and storage of events as collaborative information.

Event processing languages

Another interesting group of services that use the publish/subscribe paradigm are event moni-
toring systems. They provide an event language with programming capability that allows the ma-
nipulation of events, combining them in more useful information. An example of such systems is
GEM and EDEM (Hilbert and Redmiles 1998), which monitoring capability requires a rich sub-
scription language, not only able to guide the routing of events, but also able to group, abstract
and combine those pieces of information in more meaningful data. In those systems, events are
usually produced by software applications, and represent runtime execution aspects such as
method invocations, GUI events and others.

Another example is YEAST, a general-purpose event-action system that uses the concept of ac-
tive subscriptions (or active rules). Rules allow the definition of actions in response to subscrip-
tion matching. Those actions can involve the execution of programs or definition of new events in
response to events that can be published back to the system. YEAST in particular is designed to
monitor and integrate different objects from a UNIX system (such as files, users, system events)
with shell scripting.

UCI-ISR-05-8 - May 2005

 14

Event-driven frameworks

Besides those two common uses of the publish/subscribe paradigm, it has gained attention in
other areas such as architectural styles, as the example of C2 (Taylor, Medvidovic et al. 1996)
communication bus (or connector), and many other applications that will be presented through-
out this survey.

5.1.4 Active database systems
Active database systems support mechanisms that enable them to respond automatically to

events that are taking place either inside or outside the database system itself (Paton and Diaz.
1999). In other words, they allow events to be raised by a variety of sources as a consequence of:
changes in the database structure or data; on the execution of transactions; based on clock ticks,
or even external sources. That behavior is programmed by the use of ECA (Event condition Ac-
tion) rules which are triggered by the database system. Databases are essentially pull in their in-
teraction model, but the use of rules complement this model with the ability to react in response
to changes in data.

Active database systems combine a relational data model with the ability to produce events in
response to changes in both data and its representation. This allows the execution of programs
that can enforce data integrity, apply transformations, generate notifications, aggregate different
content and other possible extensions. The database provides persistency, scalability, interopera-
bility through the use of APIs such as JDBC, and standard query languages such as SQL, which
by nature performs content-based filtering.

Those systems are usually enterprise-scale databases, designed to operate over a data centric
model, having a big memory footprint and a centralized architecture. The implementation of pub-
lish/subscribe infrastructures in this model needs to adhere to the database data and programming
models. Protocols need to be implemented separately, as well as the timing and event models. In
other words, events must be represented as database tables or objects, and policies such event dis-
carding should be implemented.

The ability to define triggers and associate actions to changes in the database system is a fea-
ture common to database systems as Oracle, IBM DB2, Microsoft SQL Server and other enter-
prise-scale databases. Each of those systems provide a specific programming language, event and
data models that allow their implementation of ECA rules and even the execution of external ap-
plications as a parameter in the action part of the rule.

Active database systems are interesting in the context of publish/subscribe middleware since
they can be programmed to be a persistent core on top of which different notification services are
be implemented. In a database system, persistency is a fundamental assumption, and not an op-
tional element. Hence, in the implementation of a publish/subscribe semantic, for example, poli-
cies must be defined in order to schedule the discarding of old events, and queries must be limited
by timing constraints or event order in order to prevent previous data to be returned. ECA rules
can be used to implement different notification policies. SQL queries can combine information
from different events into abstracted events, allowing more elaborated subscriptions. SQL queries
do not provide support for timing constraints such as those provided by GEM or YEAST, requir-
ing the implementation of such language extensions using the database model.

5.2 Publish/subscribe design dimensions
After this brief introduction, of the existing publish/subscribe models and their main compo-

nents, we proceed to better understand the main concerns involved in their design. For such, we
use a publish/subscribe design framework that captures the main concerns existing in the design

UCI-ISR-05-8 - May 2005

 15

of current infrastructures. This framework is an extension of Rosemblum and Wolf (Rosenblum
and Wolf 1997) and Cugola et al (Cugola, Nitto et al. 2001) design frameworks, with the addition
of two new dimensions: the protocol and the versatility dimensions, which we further use to sur-
vey existing publish/subscribe infrastructures.

In order to understand the concerns involved in the design of a publish/subscribe system,
Rosenblum and Wolf (Rosenblum and Wolf 1997) proposed a design framework for such sys-
tems. In this framework, the object model describes the components that receive notifications
(subscribers) and generate events (publishers). The event model describes the representation and
characteristics of the events; the notification model is concerned with the way the events are de-
livered to the subscribers; the observation model describes the mechanisms used to express inter-
est in occurrences of events; the timing model is concerned with the casual and temporal relations
between the events; the resource model defines where, in the distributed system architecture, the
observation and notification computations are located, as well as how they are allocated and ac-
counted; finally, the naming model is concerned with the location of objects, events, and sub-
scriptions in the system.

This design framework, however, does not consider additional services, other than the publica-
tion and subscription of events present in current publish/subscribe infrastructures, a feature that
became very popular recently, with new research in the area of mobility, Internet-scale event noti-
fication systems, context-aware applications, peer-to-peer networks, and the wide use of pub-
lish/subscribe infrastructures in different application domains. Hence, we introduced a new di-
mension to this model, the protocol. The protocol model is necessary to capture other forms of
interaction with the notification service that goes beyond the common publish/subscribe interac-
tion. This extension to Rosenblum’s and Wolf’s framework is necessary to express the ability that
a notification service has to handle different functionality other than the common publish and
subscribe activities, such as: guaranteed delivery, mobility and roaming protocols, security mes-
sages, event source discovery primitives and other possible interaction mechanisms with the ser-
vice and within its distributed components. Also, as proposed by Cugola and colleagues (Cugola,
Nitto et al. 2001), we combine the naming and observation models in the subscription model.

Moreover, this framework does not account for the need for versatility, a model that captures
the mechanisms and approaches used to configure, extend and program the notification service
features do the requirements of different application domains. Hence, this extended model will be
used to analyze publish/subscribe infrastructures presented in this survey. A summary of the
model is defined in Table 1 as follows. The concept of versatility is further expanded and ex-
plained in section 6.

UCI-ISR-05-8 - May 2005

 16

Table 1 Publish/subscribe infrastructures design framework, their dimensions and examples.
 MODEL DESCRIPTION EXAMPLE

Event model Specifies how events are represented Tuple-based; Object-
based; Record-based, XML
files and so on

Subscription
model

Specifies how subscribers express their interest on sub-sets of events
and how they are combined and processed in higher-level events (if
necessary)

Content-based; Topic-
based; Channel-based;
Advanced event correlation
capabilities

In
te

ra
ct

io
n

Notification
model

Specifies how notifications are delivered to the subscribers Push; pull; both, others

Hy
br

id

Protocol model This model deals with other necessary interaction mechanisms with the
system (other than publish/subscribe), to support important require-
ments such as mobility, security, notification mechanisms and so on.
They are subdivided in interaction protocols (that require end-user in-
teraction), and infrastructure protocols (that mediate the communication
between software components in the notification service)

Interaction protocols:
Mobility; Security; Authenti-
cation; Advanced notifica-
tion policies.

Infrastructure protocols:
federation, replication, fault
tolerance and so on.

Resource
model (com-
bining re-
source and
naming)

defines how the components of the system (publishers/ subscribers and
infrastructure are organized and distributed over the network

Centralized; hierarchical
(federated); peer-to-peer,
configurable

In
fra

st
ru

ct
ur

e

Timing model defines different time constraints with respect to the interval or fre-
quency events are produced, and the order they arrive

partial ordering versus total
order; real-time constraints,
long duration versus instan-
taneous events, and so on.

cr
os

sc
ut

tin
g Versatility

model
defines mechanisms and approaches that allow the evolution, exten-
sion, configuration and programmability of the publish/subscribe infra-
structure.

simple source code modifi-
cation, plug-in oriented
approach, AOP, compo-
nent-based approaches,
mixings, and so on.

Finally, previous classifications did not account for differences between interaction and infra-

structure aspects of the publish/subscribe infrastructures. As can be seen from Table 1, the design
of a publish/subscribe system involves different concerns ranging from architectural (or infra-
structure) concerns such as the resource model, quality of service such as the timing constraints,
interoperability and infrastructure concerns such as the protocol model, and also user (in this case
the infrastructure programmer) interaction concerns such as subscription, notification and event
models. The protocol model has two aspects, the interaction part, and the implementation part,
which may or may not come together. For example, in a peer-to-peer implementation, the proto-
col model may deal with the interaction between notification server peers alone, whereas in a
mobility protocol, end-user interaction may be necessary, demanding a roaming end-user proto-
col. Because of that, we regard as a separate category as in the table above (hybrid). This com-
bined set of characteristics makes the study of versatility in the context of publish/subscribe infra-

UCI-ISR-05-8 - May 2005

 17

structures a challenging endeavor. On considering versatility in this domain, one must match the
configuration, variability and evolution of the infrastructure with the evolution and variability of
the user interaction models, which comprises the notification, subscription and event models.

In order to better understand our concept of versatility, the next section discusses this aspect in
more detail and surveys existing approaches to this problem in the context of publish/subscribe
infrastructures.

6 Software Versatility
In this section, we introduce and motivate the concept of versatility for publish/subscribe infra-

structures, presenting and explaining the main software engineering requirements involved in this
concept. The concept of versatility sets the basic dimensions of the framework that will be used
as a guide to evaluate current approaches to each one of those dimensions.

As any other software system, publish/subscribe infrastructures should evolve to accommodate
new requirements demanded by the applications it supports. According to Lientz and Swanson
(Lientz and Swanson 1980), the software maintenance phase (which includes software adaptation,
fault repair and functionality addition and modification) represent 50 percent of the total software
cost, having 65% of this cost directly related to the implementation of new requirements. Hence,
the importance of using techniques during software design and development, that improves soft-
ware maintainability and evolution, due to the great impact it has in reducing the total cost of
software (Sommerville 2001).

In spite of this fact, current publish/subscribe infrastructures are not designed to cope with
software evolution. This is not a surprise. As observed by Parnas (Parnas 1978), the majority of
software systems are not designed for change: instead, they are built to solve specific and well
defined problems, which ends up hindering their ability to evolve due to its high costs of main-
tainability. Publish/subscribe infrastructures are not an exception to this observation.

On the light of this problem, Parnas proposes that, in order to support evolution and variability,
software must be designed and implemented not as a single program, but as a family of programs
that can be extended and contracted according to different application needs. This approach is
motivated by his observation that software change is usually driven by the need to support: (1)
Extensions motivated by social, organizational or technological evolution; (2) New and different
hardware configurations; (3) Differences in its input and output data, while its function is pre-
served; (4) Different data structures and implementations due to differences in the available re-
sources; (5) Differences in the size of data input and output; (6) And the need of some users of
only a subset of features provided by the software.

Hence, according to Parnas, software can be considered general if it can be used, without
change in a variety of situations; whereas it is considered flexible if it is easily changed to be used
in a variety of situations (Parnas 1978). Our notion of versatility is based on this original defini-
tion of flexibility, and incorporates additional design properties that are important to current pub-
lish/subscribe infrastructures. Parnas observations, even though still current and valid did not ex-
plicitly mention nor predict other kinds of concerns such as runtime (dynamic) change, module
(or component) distribution and usability. The first two issues are central to distributed systems
and publish/subscribe middleware, whereas the latter is essential for the acceptability and useful-
ness of the proposed approaches. Based on this motivation, we proceed to present our concept of
versatility.

UCI-ISR-05-8 - May 2005

 18

6.1 Versatility framework for publish/subscribe infrastructures
According to the Cambridge Advanced Learner’s Dictionary, versatility is the ability “to

change easily from one activity to another” or to be “able to be used for many different pur-
poses.” In the context of software engineering, versatility can be defined as the ability of a com-
putational system to serve multiple purposes or to accommodate the requirements of different use
situations.

On the light of the above discussion, we proceeded to research ways of providing and main-
taining good software engineering qualities that allows the customization, expansion and contrac-
tion of publish/subscribe middleware in a usable way. In one sense, the set of properties we sur-
vey has been the ultimate goal of software engineering since its beginning: to build software that
is easy and cheap to evolve and change. For such, we adopted the term versatility in order to em-
brace that extensive set of qualities. Moreover, we sought a new term that could imply that that
these qualities applied not only to technical needs but to the varying needs of human stakeholders
and application workplace settings. Hence, from a software engineering perspective, and more
specifically in the context of middleware and publish/subscribe architectures, versatility com-
prises the following requirements.

Techniques for Software Evolution. These techniques allow a piece of software to incorporate
changes due to (functional and non-functional) requirements evolution. Techniques in this cate-
gory accomplish their goals by promoting extensibility, programmability or reuse of software.
They are focused in three main sub-areas:

• Extensibility (or enhancement) techniques. Encompasses all classes of enhancements
that can be made in the system without changing the existing functionality, for exam-
ple, techniques as script, macro languages and composition primitives found in UNIX
(Notkin and Griswold 1988), or programming language supported capabilities such as
OO class extensions. Extensibility is obviously not enough to support software evolu-
tion, which usually requires fundamental changes in software functionality. In the con-
text of publish/subscribe middleware, extensibility implies the addition of new func-
tional behavior, such as advanced event processing, or non-functional properties such
as reliability and fault tolerance, which adds to the current subscription language, while
maintains backward compatibility with existing publish API and the subscription lan-
guage.

• Programmability techniques. They allow the customization and modification of the
behavior of existing software. Programmability (or programming) implies deeper
changes in the software, without necessary backward compatibility to existing re-
quirements. For example, in software programmability strategies such as open imple-
mentations, strategic pieces of software can be changed or modified providing new be-
havior to the whole system. This new behavior may not be compatible with previous
existing requirements. In the context of publish/subscribe infrastructures programma-
bility allows the reconfiguration of the publish/subscribe middleware to support differ-
ent event representations (as records, objects, tuples), and to permit deeper changes in
the subscription and notification languages, allowing, for example regular expression
queries and different event delivery mechanism. Programmability can also be used to
define new federation and interaction protocols with the notification service.

• Reuse techniques (Krueger 1992). Those techniques allow the modularization of cer-
tain aspects of software, permitting the incorporation of existing functionality, wrapped
as special software pieces (or components), in the construction of new software. These
modules permit the transport of functional or non-functional requirements, from one
application to another. Reuse allows the built of new systems out of the combination of

UCI-ISR-05-8 - May 2005

 19

new and existing parts, a characteristic that can dramatically reduce the software de-
velopment costs, since software can be built out of existing parts with minor adaptation
effort. In the context of publish/subscribe, for example, existing subscription filtering
functions can be used to implement more advanced filtering and event processing
commands. A new sequence detection command can use the filtering capabilities al-
ready implemented in the system, for example. In another example, existing pull noti-
fication mechanisms can be integrated with roaming protocols, implementing more
complex mobility functionality.

Techniques for Software Variability (or flexibility). Those techniques are used to manage the
contraction and expansion of software in order to support different functional and non-functional
requirement sets. For example, to accommodate different hardware resources, application do-
mains, data formats and other reasons mentioned by Parnas (Parnas 1978). They may also be ap-
plied to redistribute the processing throughout the distributed system (in our case, between clients
and servers). Those techniques may be applied statically, before the software is built and de-
ployed, or dynamically, in the field, after the software is deployed.

• Static variability techniques are applied at software build time, as the example of con-
ditional compilation, or at design time, such as those applied for the creation of prod-
uct-line software architectures.

• Dynamic variability techniques are usually applied at invocation-time, when the de-
ployed software is restarted, or at runtime, while the software is in execution. Exam-
ples of such techniques include plug-ins and dynamic architecture approaches de-
scribed at (Clarke and Coulson 1998)

Usability Techniques for Software Engineering. In order to be useful, and fulfill its purpose,
software must be usable by those who will use it. In its definition of usability, Nielsen (Nielsen
1993) proposes a set of characteristics software must have in order to be usable. Those character-
istics include: Learnability, efficiency, memorability, few errors and satisfaction. The cost associ-
ated to learning, and applying those techniques must not exceed the total cost of developing an
application-specific application. Because of that, usability is a key feature in the adoption of the
other two sets of techniques.

Besides the above qualities of versatility, publish/subscribe infrastructures need to support the
essential middleware requirements of scalability, interoperability, heterogeneity, network
communication and coordination (Emmerich 2000) which must co-exist with the versatility
properties we propose.

After defining our concept of versatility, the next section presents existing software techniques
and their applicability to this versatility properties we propose.

7 Survey of existing software versatility approaches
This section surveys existing techniques that have been used in related middleware areas or

have a good potential to be used in the publish/subscribe domain in order to provide some or all
of the versatility properties we propose. The techniques are presented in different sections, ac-
cording to the versatility properties that we propose in section 6.1.

As noted by Brooks, programs are complex to design and visualize, while easy to change
(Brooks 1987). This flexibility is usually confused with generality, leading the false impression
that software is easy to evolve. The reality, however, is that software is usually designed to solve
a specific problem and, as such, it passes through many specializations and simplifications during
its design. This simplification, while decreases the design complexity, the development time and

UCI-ISR-05-8 - May 2005

 20

the initial software cost, usually promotes a lack of generality, which hinders the software ability
to be extended and contracted to accommodate changes. Hence, when changes in the solution
domain start requiring modifications in the software, the initial design decisions allied with the
inherent complexity of software stand as obstacles for the software evolution. In this context,
modifications in software usually results in architecture drift (the destruction of software concep-
tual integrity as mentioned by Brooks), and the intrinsic complexity of software imposes high
maintenance costs. This change and drift cycle usually persists up to the point it becomes eco-
nomically prohibitive for new changes to be made in the software resulting software. The tech-
niques described here are in their large part, a result of years of research and practice in the fields
of software maintenance, design and programming languages. They directly or indirectly repre-
sent approaches and techniques that strive to tame the fundamental complexity and changeability
characteristics of software.

It is also important to mention that those techniques are not “silver bullets” (using Fred Brooks’
analogy (Brooks 1987)), they are nor universal nor definite solutions to all the software versatility
problems as a whole, but represent small steps in the overcoming of some of those problems.
Moreover, their use have an associated cost, mainly related to their learning curve, the way those
techniques affect the design of software (generalization usually requires a more thorough soft-
ware analysis phase), and how usable they are when applied in a day-to-day programming disci-
pline. Hence, trade-offs must be observed when deciding which approach to choose, since the
versatility gains they provide may come with steep learning curves and lack of usability.

In this section, we introduce a set of approaches that have been used to provide the versatility
properties to middleware in general (especially RMI-oriented such as CORBA), as well as other
promising software techniques that we think can be applied to publish/subscribe domain. The
surveying of those related areas and systems is important since there are very few research sys-
tems that strive to address the problem of versatility in the publish/subscribe domain, a fact that
limits the number of publish/subscribe infrastructures surveyed, but opens the opportunity to
study the application of some approaches in related middleware infrastructures such as CORBA
ORBs. Whenever mentioned in the literature, strengths and limitations of each approach in ad-
dressing the versatility requirements are discussed.

This list of techniques is by no means exhaustive. They were chosen due to their potential in
addressing one or more of the versatility requirements proposed, or for being representatives of
promising approaches for the area of middleware versatility, more specifically publish/subscribe.
Whenever possible, a list of publish/subscribe infrastructures that uses the proposed approach is
presented. It is important to mention, however, that the thorough comparison between those ap-
proaches, for the sake of determining which approach is better for publish/subscribe infrastruc-
tures is not the goal of this survey. Those techniques are presented here as valid or promising ap-
proaches to address the requirements imposed by the versatility properties. Ultimately, it is up to
the reader to compare them and decide which technique to use.

7.1 Classification framework
In general, it is hard to separate techniques according to simple criteria as programmability,

configurability and reuse. Those characteristics are usually inter-related, being a common goal of
many techniques surveyed in this section. For example, the concept of software reuse usually re-
quires ways of efficiently separating concerns into components or reusable blocks. Those blocks
require mechanisms to allow their specification, implementation and future composition, which
render them as good configurability and reuse techniques. Hence, in this section, we strive to pre-
sent the software versatility techniques according to a more or less logical order, addressing the
most popular ones first, and going to the most promising ones at the end. After a brief description
of the approach, we classify them according to the following framework:

UCI-ISR-05-8 - May 2005

 21

• Short introduction and description: an introductory set of paragraphs explaining the
approach.

• Strengths: a list of the main positive points and remarks of the approach

• Limitations: a list of negative points or limitations

• Examples: a list of publish/subscribe infrastructures or related middleware implemen-
tations where the approach has been used

• Applicability to publish/subscribe: a brief description on how it can be used to ad-
dress one or more of the versatility requirements in this domain.

7.2 Object-oriented programming languages
One of the most straightforward and adopted techniques to extend, configure and program new

requirements into software is the direct modification of the source code. As a consequence, the
most effective way to address the versatility requirements is to empower the programming lan-
guages with commands and concepts that allow the taming of software evolution and configura-
bility. Throughout the years, especially in the 80’s and early 90’s, the object-oriented paradigm
and programming languages as C++ and Java became mainstream. Those languages provide na-
tive support for the concept of objects (abstract data types), extension, inheritance, generalization,
polymorphism, information hiding and late binding of objects.

Applicability to publish/subscribe. In fact, many of the approaches discusses in the next sec-
tions are directly or indirectly built upon modern object-oriented concepts, provided by object-
oriented programming languages. Those approaches include: software frameworks, software pat-
terns, computational reflection, aspect-oriented programming, and others. Besides the idea of ob-
jects as implementation of Abstract Data Types, that encapsulate data and processing below a
public API, mechanisms such as late binding, inheritance (extension and generalization) and
method overload are responsible by the versatility of OO languages as follows.

• Late binding of objects. Allows the decision of which object type (or subtype) to create, to
be performed at runtime. It is the basis for different runtime change mechanisms such as tem-
plate method and factory patterns (Gamma, Helm et al. 1995).

• Inheritance, (extension and generalization). This mechanism allows the separation of con-
cerns that are common to two or more objects, to be componentized in a super class (or par-
ent object). This allows code reuse and facilitates maintenance. It also allows the punctual
specialization of objects and the extension of software at object-level.

• Method overload. This mechanism also copes with specialization of software, allowing the
redefinition of methods in sub-classes, being largely used during extension of software, since
it preserves the object contract, in other words its API and usage protocol.

UCI-ISR-05-8 - May 2005

 22

Table 2 OO Programming summary
Approach/technique Object-Oriented (OO) programming

Pros Provide a generic programming model based on abstract data types (objects) that cope with
reuse, information hiding and extension of software.

Cons The information hiding benefit of objects do not scale well, requiring new techniques for
their composition. The model does not allow encapsulation of non-functional requirements.

Ge
ne

ra
l d

es
cr

ip
tio

n

Examples OO Programming languages including Java and C++

Extensibility Inheritance and method overload

Programmability Inherent to the programming language

Reuse Concept of objects, inheritance and generalization, associations and aggregations

Static variability The concept of interfaces (Java), abstract classes (Java and C++) and inheritance allows
objects to be interchanged at program time

Dynamic variability Late binding of classes allow the implementation of dynamic variability mechanisms Ve
rs

at
ili

ty

Usability Not enforced by the languages. However, the concept of abstract data types (objects) and
their information hiding allows programmers to use objects as black boxes, improving us-
ability of APIs.

Publish/subscribe applicability Provide the basic mechanisms and concepts used in the implementation of many pub-
lish/subscribe infrastructures

7.3 Software Frameworks
A more elaborated form of extensibility is provided by software frameworks. Frameworks

separate commonalities from variability in an application domain. They are implemented as
skeletal groups of software modules that can be tailored for building domain-specific applica-
tions. They provide reuse in the form of pre-programmed logic that can be customized to specific
needs in that application domain. Current Software frameworks are usually implemented in ob-
ject-oriented languages, being described in terms of concrete and abstract classes and a set of
variation points or hotspots that together collaborate for the overall software implementation
(Johnson and Foote 1988). Users adapt the framework for their need by providing new implemen-
tations to its hotspots. Hotspots are parts of a program which are likely to change from applica-
tion to application. From an OO point of view, hotspots are usually implemented using abstract
classes, template methods and interfaces. Frameworks are not limited to object oriented lan-
guages, in fact, recent research on Aspect Oriented frameworks is in progress (Constantinides,
Bader et al. 2000).

Strengths. As studied by Roberts and Johnson, the use of frameworks can reduce the cost of
developing an application by an order of magnitude since it promotes the reuse of both design and
code. Moreover, they have been adopted in a large set of applications and, for being built upon
existing object-oriented programming languages and techniques, they can rely on existing exten-
sibility and polymorphism features from these languages (Roberts and Johnson 1996). Frame-
works also promote reuse. They can be used to consolidate the domain knowledge acquired dur-
ing earlier projects so it can be reused in future projects to realize the application goal (Codenie,
Hondt et al. 1997). Finally, frameworks also hide internal application details, and provide a gen-
eral domain model, allowing their users to concentrate in customizing the hotspots for their par-
ticular needs, instead of being required to understand all the aspects of the program.

UCI-ISR-05-8 - May 2005

 23

Limitations: A disadvantage of the framework is in its high initial development cost, which
requires a thorough understanding of the domain being automated and its requirements, knowl-
edge that may take years to be crystallized in the form of a framework. Hence, the design and
implementation of software frameworks is not a trivial task, a balance between the number of
features provided by the framework and the extension points must be reached. An ideal frame-
work includes all common features of a domain, and leaves all variability to be implemented as
extensions. If the framework includes too many features, it can become complex and less flexible;
whereas, if it omits common functionality, its generality gets compromised and different applica-
tions will need to implement the missing functionality, which may result in code replication
(Codenie, Hondt et al. 1997).

Usability may also become an issue. If not well documented, users can start making wrong as-
sumptions about the process the framework automates Fact that can result in wrong implementa-
tions and steep leaning curves.

Frameworks are also limited in their ability to evolve in order to address new requirements im-
posed by the application domain evolution. This evolution usually issues in class complexity and
continuous refectory, which issues in documentation inconsistencies, architectural drift, and pro-
liferation of versions (Codenie, Hondt et al. 1997). If a framework gets adopted in the built of
many projects, backward compatibility may also impose some restrictions in its evolution.

Example: Recently, frameworks have been used in the development of configurable middle-
ware, as the example of the TAO ORB (Schmidt and Cleeland 2000). The TAO ORB implements
a CORBA ORB as an extensible framework. It is modeled in terms of its basic components, al-
lowing the static configuration of services and the runtime change of its strategic components.
TAO can be configured to cope with different real-time constraints of applications by selecting
the appropriate implementation of each component of the ORB. It also allows the definition of
configurations where only necessary components are present, which addresses small footprint
requirements of mobile devices or special real-time constraints.

Applicability to publish/subscribe. A publish/subscribe system, as defined in section 5.2 can
be designed in terms of different dimensions, which concerns can be generalized, having its main
concerns implemented as adaptation points and hotspots. In fact, this idea is used in YANCEES
to implement composition filters; and in ADEES to define new subscription commands. In fact,
frameworks are largely used to support other approaches such as open implementation and plug-
ins, or even aspect-oriented and reflection.

UCI-ISR-05-8 - May 2005

 24

Table 3 Software frameworks summary
Approach/technique Software Frameworks

Pros Separates commonalities from variability in an application domain. Reduced end user de-
velopment costs, reuse of domain knowledge, design and code, high extensibility, allowing
its customization to different domain variations.

Cons High initial development costs and poor programmability (changes in the main application
logic crystallized in the framework are not allowed). High evolution costs: deep changes in
the application domain may produce architectural drift. Ge

ne
ra

l d
es

cr
ip

tio
n

Examples TAO ORB, YANCEES, ADEES

Extensibility Provided by hotspots and adaptation points

Programmability Limited to the features that can be customized in the adaptation points. The main program
logic is not easily programmable

Reuse Of code and of domain logic (or solution)

Static variability Provided by hotspots and adaptation points

Dynamic variability Supported by dynamically loaded adaptation points and hotspots. Generally implemented
by the use of OO late binding approach.

Ve
rs

at
ili

ty

Usability Information hiding and hotspots allow the extension of software without the full knowledge
of the code. Design by contract.

Publish/subscribe applicability Can be used to model a publish/subscribe system as an extensible core around of new
features are implemented.

7.4 Software patterns
Software patterns are recurring sets of relationships between classes, objects, methods and

other programming language constructs, that define preferred solutions to common programming
problems (Gamma, Helm et al. 1995). Software patters are programming language independent,
but became popular in the context of object-oriented programming. They were originally devel-
oped by the observation of recurring solutions in existing software frameworks. For such charac-
teristic, software patters have been largely used in software development as elements of reuse
and, when combined in the development of new frameworks, can largely improve the extensibil-
ity, the understanding and documentation of software, coping with its maintainability. Software
Patterns can also be seen as building blocks of large-scale software systems, helping in the disci-
pline and composition of system’s subparts. This allows the evolution of software in more pre-
dictable ways and leverage the design of software frameworks.

Strengths. The main benefits in the use of software patterns are in the areas of reuse and us-
ability. Software patterns bridge the gap between frameworks and system libraries by providing
higher level solutions to common problems. One of the main contributions of design patters is a
catalog where researchers and practitioners can refer to common solutions to problems. More-
over, when a solution is non-trivial, patterns work as reference implementations, allowing users to
learn form optimized solutions to the problem. In a design pattern catalog, examples, counter-
examples and trade-offs are presented, allowing the choice of the pattern to each solution. These
high-level concepts also help in source code documentation, improving its understanding and de-
sign that, by using this approach, can be expressed in terms of higher-level concepts (instead of
mere classes) (Gamma 2001). In a further step, software patters are also small-scale solutions, at
the software development level, that are used as building blocks to implement higher-level soft-
ware components at software architecture level (Beck and Johnson 1994).

UCI-ISR-05-8 - May 2005

 25

Limitations. In spite of all the benefits involved in the use of software patterns, they are not
universal solutions. According to Gamma: “Patterns have costs: indirection and complexity, and
therefore one should design to be flexible as needed, not flexile as possible” (Gamma 2001). In
other words, the excessive use of software patterns, when applied to simple problems, may over-
complicate the software, instead of simplifying its comprehension and documentation. A right
balance must be achieved.

Examples. Over the last 10 years, software patterns have been applied in the construction of all
sorts of software, including virtually all modern publish/subscribe infrastructures such as Siena,
YANCEES, FACET and other sorts of middleware such as CORBA ORB frameworks such as
TAO (Schmidt and Cleeland 1999).

Publish/subscribe applicability. They have become a common practice in modern object-
oriented programming, coping with its benefits to design and maintenance of software. The idea
of patterns is not restricted to object oriented programming. They have recently been applied to
AOP and other advanced programming techniques too. Patterns that solve common variability,
reuse, extensibility and programmability approaches have been defined. Some of them include the
strategy design pattern, chain of responsibility, the observer (publish/subscribe), filter, and others
(Gamma, Helm et al. 1995). Hence, software patterns and frameworks are largely used techniques
that largely improve the maintainability, documentation, reuse and evolution of software. They
currently represent building blocks with which other approaches are implemented.

Table 4 Software patterns summary
Approach/technique Software Patterns

Pros Brings software reuse in terms of recurrent design solutions, improve extensibility and
understanding of software

Cons May complicate simple programs with unnecessary generality

Ge
ne

ra
l d

es
cr

ip
-

tio
n

Examples Most OO-based systems: Siena, YANCEES, FACET, TAO ORB and others

Extensibility Some patterns such as the strategy pattern, factories, filters and chains of responsibility
represent common implementation-level solutions for extensibility problems.

Programmability Some patterns such as the strategy pattern and chains of responsibility can also be used
to improve software programmability (for example, open implementations (section 7.8) can
be seen as an instance of the strategy software pattern).

Reuse Reuse of design and recurring solutions

Static variability Some patterns such as the component configurator software pattern, for example, can be
used to select between existing implementations.

Dynamic variability Some software patterns such abstract factories represent recurring programming-level
solutions to the problem of dynamic allocation of components and objects

Ve
rs

at
ili

ty

Usability They improve software comprehension, allowing design in terms of higher-level con-
structs. Pattern catalogs provide common solutions and establish a vocabulary that im-
proves the understanding of software designed with this approach.

Publish/subscribe applicability Provide the basic mechanisms and concepts used in the implementation of many versatil-
ity techniques used for publish/subscribe infrastructures

7.5 Program transformations
As pointed out in 7.3, the adaptation capability of software frameworks is limited. They do not

tolerate changes or variability other than that possible to be accomplished when using its variabil-

UCI-ISR-05-8 - May 2005

 26

ity points (hotspots, hooks and adaptation points). As new application requirements get produced,
there is a need for evolving the main framework logic and design. Program transformation tech-
niques1 such as source code refactoring address some of those problems by managing and auto-
mating the evolution of the source code.

7.5.1 Source code refactoring
Automated source code refactoring techniques are behavior-preserving program transforma-

tions that automate design-level changes (Tokuda and Batory 2001). By applying successive
transformations in the program source code (such as add, remove, promote object methods or at-
tributes; inherit, un-inherit, substitute classes; push up and push down methods and so on.), a pro-
gram can be transformed in order to more easily incorporate new functionality, improve design or
be more permissible to changes and extensions. Those transformations must be assisted by soft-
ware tools, which are usually available as part of Integrated Development Environments (or
IDEs). The same techniques can also be used to perform improvement on legacy code by, for ex-
ample, generalizing it, and making it more amenable to changes.

Strengths. Automated source code refactoring techniques address the complexity involved in
modifying existing software such as software frameworks or other complex systems. They man-
age the consistency of complex software projects updating references, types, names and other
program aspects, as necessary, maintaining the original code behavior.

Limitations. Source code refactoring techniques, however, are limited in scale and scope.
They provide small-scale, source code level changes (class, method and variable-wide changes),
which hinders their scalability to very large projects. When deeper changes are required, such as
component-level or system-wide changes, for example, current transformations cannot handle
such abstraction level. In other words, they are not fit for changes in higher-level software ab-
stractions. Another problem with source code refactoring is the inability to support behavior
changes in the code, such as algorithmic and semantic changes, which requires programmer’s
assistance, for example, changes in the software environmental assumptions, protocols and oth-
ers.

Examples. Program transformations provide a set of techniques that support source code
changes. As a consequence, they can be used in different programming languages and models in
virtually all application domains, including publish/subscribe middleware. An example of IDE
that provides refactoring capability is Eclipse (International 2003).

Applicability to publish/subscribe. As other programming techniques, they indirectly allow
the development of more versatile publish/subscribe infrastructures by allowing the reorganiza-
tion of current implementations in order to better accommodate changes and extensions.

1 More information about other program transformation techniques is available here: http://program-

transformation.org.

UCI-ISR-05-8 - May 2005

 27

Table 5 Software refactoring summary
Approach/technique Source code refactoring

Pros Help in the evolution of software by automating source code modifications, managing code
consistency.

Cons Supports source code changes preserving reference consistency. Provides very limited
semantic changes such as promote, subclass, combine objects, but lacks more advanced
semantic transformations.

Ge
ne

ra
l d

es
cr

ip
tio

n

Examples Object-oriented source code refactoring transformations supported by the Eclipse IDE.

Extensibility Not directly supported but provides the ability to perform structural changes in source code
that helps in the extension of existing software functionality

Programmability Not directly supported but provides structural changes in source code that helps in the
addition of new functionality

Reuse Operates over existing code, helping in its reuse by allowing its modification and adaptation,
which can help existing code to be reused in other contexts.

Static variability Helps in directly changing source code, but provides no configuration management capabil-
ity.

Dynamic variability Not supported

Ve
rs

at
ili

ty

Usability The use of IDEs is a key characteristic of this technique. This integration improves its us-
ability, resulting in the current popularization of refactoring tools and algorithms.

Publish/subscribe applicability Is a technique that can be used to support software evolution and maintainability in general,
which includes publish/subscribe infrastructures

7.6 Component-based software development approaches
In its seminal paper on software reuse, McIlroy (McIlroy 1968) proposes the componentization

of software. Inspired on the componentization existing in hardware, he proposes the creation of a
library of reusable software components and automated techniques that would allow their cus-
tomization to different degrees of precision and robustness, and their subsequent application to
build all sorts of software systems. According to McIlroy, component libraries could be effec-
tively used for numerical computation, I/0 conversion, text processing and so on. This seminal
idea inspired many of current Component-based Software Engineering (CBSE) approaches.

Currently, the software component concept is built upon concepts such as software modulariza-
tion and information hiding (Parnas 1972), functional decomposition, abstraction and Abstract
Data Types (ADTs) (Guttag 2001), and reuse (Krueger 1992). Components in general are mod-
ules as defined by Parnas, that can be decomposed in sub modules, obeying a require/provide re-
lation. They apply the concept of recursive composition: Modules in a lower-level of abstraction
provide services to higher-level ones, at the same time that they can require services from other
modules. Hence, the concept of software components manage complexity by recursively compos-
ing encapsulated pieces of software under well-defined interfaces, obeying common communica-
tion protocols or styles. As such, components provide the basis for more advanced strategies such
as software architecture and plug-ins that will be further described.

7.6.1 Classical component-based approach – Toolkits and component libraries
The classical idea behind CBSE is the building of software out of a family of generalized com-

ponents that can be slightly configured and combined in different ways for the implementation of
different systems. In order to be applied in an application domain, components are usually de-

UCI-ISR-05-8 - May 2005

 28

signed following pre-defined communication and encapsulation models, generally known as a
component models. An example of a component model for the building of applications on top of
object-oriented middleware is the CORBA Component Model (Group 2002), which uses RMI
over a common CORBA ORB, as its communication mechanism, and IDLs (Interface Definition
Languages) as their interfaces. In this model, components can also reside in special containers
that provide common services such as transactions, persistency, and life-cycle.

Based on a common component model, components are usually packed in the form of libraries
or toolkits. Component libraries provide specialized sets of simple components for the building of
software. A classical example is a set of mathematical functions, and generalized algorithms such
as those provided in Java packages such as: java.math or java.util. A toolkit is a library of more
specialized components, usually tailored as specific purposes that can be used to the build of dif-
ferent applications in a domain. For example, network communication protocols, user interface
widgets and so on, as the example of the Java abstract window toolkit (AWT).

Modern component models apply a more elaborate concept of a container. A container is a
generalized framework that manages the basic aspects of the component life-cycle such as activa-
tion, deactivation, persistency and provides basic communication services. A container can pro-
vide more advanced features such as transactions, distribution transparency, load balancing and
other policies. An example of a framework that provides this capability is the J2EE2 and their dif-
ferent implementations such as JBoss 3.

Strengths. The classical CBSE approach achieves high-level degrees of problem decomposi-
tion and reuse by applying the concept of components. This approach is usually based on stan-
dards, called component models that, by restricting the interaction and encapsulation mechanisms
of those modules, strive to improve their ability to be integrated and composed into different
kinds of software. A consequence of this model is the improved reuse and configurability of dif-
ferent parts of a software system.

Currently, standardized component models are being supported by application containers, that
provide optimized life cycle and communication services, besides non-functional requirements
such as security. They provide services such as logging, secure communication channels, persis-
tency, and transactions, many times supported by AOP implementations.

Limitations. The traditional component libraries and toolkits are designed with specific appli-
cation domains in mind, which usually limits the use of those components in different application
domains. Moreover, they are usually provided with limited configurability and adaptability.

The more recent use of application containers may solve this problem by providing all sorts of
non-functional requirements to the application. However, they are usually very complex to use
and configure and may overcomplicate the implementation when what is needed is a simple or
small solution. In other words, the one-size-fits-all approach may not fit all systems afterwards,
due to its high footprint.

Example. The Quarterware architecture (Singhai, Sane et al. 1998) defines a middleware con-
struction technique (called software RISC) and a set of generic components (provided as a tool-
kit), that can be specialized and combined to construct different middleware implementations.
Such toolkit includes components for: data marshaling and unmarshaling, object references, data
transport, dispatching, invocation policies and wire protocols. Experiments performed using this
component library, showed that one can build infrastructures such as CORBA ORBs, Java RMI
and MPI (Message Passing Interface) standards. In the Quarterware architecture, the components

2 Java 2 Entreprise Edition: http://java.sun.com/j2ee/1.4/docs/index.html
3 JBoss Application Server: http://www.jboss.com/

UCI-ISR-05-8 - May 2005

 29

are implemented as generic OO classes that can be composed associations and can be customized
through extension mechanism of the language.

Applicability to publish/subscribe. As exemplified by the Quarterware architecture, that
builds a simple MPI application, many parts of a publish/subscribe infrastructures can be modeled
using distinct components, and can be customized to different needs using this approach. For ex-
ample, the subscription-event matching algorithms, the communication protocols, the input and
output event queues, or event language commands. The challenge is in modeling and separating
the system into replaceable components. Moreover, since versatility is our goal, a good deal of
time may be spent on modeling generic interfaces that can absorb the evolution of those compo-
nents. Non-functional requirements can be provided by application containers.

Table 6 Classical component-based summary
Approach/technique Classical component-based

Pros Provides high modularization and reuse of functional components; non-functional require-
ments are usually provided by standardized application containers.

Cons Are usually based on application-specific components; components provide limited internal
configurability and programmability. Application containers are very powerful but have a
steep learning curve and not all its services are needed by simple applications.

Ge
ne

ra
l d

es
cr

ip
tio

n

Examples The Quarterware architecture

Extensibility Extension happens in the component-level, and may be possible by applying OO tech-
niques such as sub classing, generalization, method overriding; ore more advanced ap-
proaches such as open implementations and AOP.

Programmability Provided by regular OO or AOP languages. Programs must comply with a predefined com-
ponent model, which may restrict communication styles.

Reuse Achieved at the component-level by the use of common interfaces and protocols prescribed
by the component model

Static variability Provided by the component model and its services. The application containers may provide
mechanisms such as manifest files that help in achieving this goal.

Dynamic variability Dependent on the component model and auxiliary tools/mechanisms. The application con-
tainer may provide dynamic loading mechanisms that help in implementing this facility.

Ve
rs

at
ili

ty

Usability Information hiding and standards help in creating a consistent programming environment
that copes with usability. Application container models may be hard to learn. Advanced
features are usually not used due to the steep learning curve of the model.

Publish/subscribe applicability Main parts of a publish/subscribe system can be componentized; especially event routing
mechanisms, protocols and event filters. Application containers can be used to provide non-
functional requirements. Language extensibility is not addressed by this model.

7.6.2 Plug-in based software development
Traditionally, plug-ins have been used as optional (as opposed to required) application-specific

components which can be used to extend existing applications. In other words, they were defined
as small tools or modules, not known at built time, that were used to extend an existing applica-
tion. Their success in enabling application extensibility has inspired their use as a fundamental
mechanism for building whole new applications originating pure plug-in architectures (Birsan
2005). A great success example of this new approach is the Eclipse IDE (International 2003),
which are entirely built upon this paradigm.

UCI-ISR-05-8 - May 2005

 30

In this context, plug-in based software development can be seen as a special case of compo-
nent-based software development which supports the evolution and customization of the features
of the application by the use of plug-ins. Plug-ins rely on configuration management provided by
the system runtime environment (or kernel), rather than the user, allowing graceful upgrading of
systems over time without requiring application restart (Chatley, Eisenbach et al. 2003; Mayer,
Melzer et al. 2003). The runtime environment manages: (1) plug-in activation and deactivation;
(2) plug-in registry, a list of installed plug-ins; and (3) inter-plug-in dependencies management.
Optionally, the kernel can support other services such as logging, security, and so on.

As components, they must also implement a predefined interfaces and communication styles,
defined by the plug-in model of its target application. They usually can access a sub-set of envi-
ronmental resources using an API provided by the application kernel. Plug-ins can be of different
granularities. They can be implemented as light-weight modules, or more complex components
that can be used to extend software. They can also depend on one another and their interdepend-
encies can be established through extension points defined in the plug-in interface, which allow
their composition into complex applications. The dynamism aspect of plug-ins allow their instal-
lation after the target application it is released.

Plug-in oriented development versus frameworks. The basic difference between plug-in ori-
ented programming and software frameworks is that: (1) plug-ins are usually much more complex
modules than regular framework extension points, which are usually implemented as one or few
objects; (2) for being complex, plug-ins can be whole sub-systems, which make them similar to
components. (3) As such, plug-ins can depend on one another, which allow their composition to
create full-scale applications (for example, the Eclipse IDE is a full application built upon this
paradigm).

Strengths. Plug-ins leverage the idea of components with dynamic loading capability, which
can be used to reduce application footprint. For being developed for a specific environment, they
usually rely on existing environmental APIs and services, which makes their development easier
than generalized components. For such characteristics, plug-ins have been used to:

• Modularization and footprint control: To decompose systems in smaller optional parts
that are loaded only when necessary, which copes with functional configurability.

• Extensibility: To provide (third party) extensions to existing software after it is de-
ployed.

• Runtime change and upgrade: To allow upgrade of software parts without restarting,
which provides dynamic change capability.

Limitations. Plug-ins are usually not designed to provide non-functional requirements to soft-
ware. In other words, their control over the application they extend is limited by the environment
and API the application provides, mainly due to security policies and the lack of access to the
application source code. This makes it difficult to use approaches such as AOP, that requires ac-
cess to the whole application code (break of encapsulation). They also requires extra effort in the
original development of the system, which requires the built of an extensible plug-in model, a
runtime environment where plug-ins can be activated and deactivated, an API that allows plug-ins
to communicate with the application and its main resources and data structures. Another problem
that comes from the ability of plug-ins to be composed is the management of their interdependen-
cies, versions and possible incompatibilities (a.k.a. “plug-in hell”). Security management is an-
other issue since plug-ins can many times be dynamic downloaded and installed. Finally, scalabil-
ity can be an issue, if too many plug-ins are installed at the same time.

UCI-ISR-05-8 - May 2005

 31

Examples. Plug-ins have been widely used on the web to implement extensions both to the
server side, as the example of Apache4, and in the client side, as the example of Netscape Com-
municator5. The Apache web server uses a pluggable architecture where modules providing dif-
ferent functionality can be added. These modules or plug-ins can be installed with the help of
hooks and an internal API, over the different stages (request reception, request translation, au-
thentication, resource handling (using MIME types), response generation, logging, response) of
the internal dataflow-based architecture of this HTTP server. Examples of extensions supported
include protocols such as WEBDAV and SSL, and externally-invoked applications such as CGI
scripts.

Recently, the development of software based on plug-ins has gained momentum. One of the
drivers of such popularity is the Eclipse environment (International 2003). Eclipse is an IDE (In-
tegrated Development Environment) built entirely on plug-ins. Eclipse plug-ins are not only small
programs (or tools) designed to augment the IDE, but also the main building blocks of this tool.
The architecture of the system is presented in Figure 4 below. Small tools are usually implemented
as a single plug-in, whereas larger tools can comprise many plug-ins. In Eclipse, a plug-in can
contribute new functionality to the platform by using extension points declared by other plug-ins.
Plug-ins are dynamically loaded when necessary, which reduces the application memory footprint
and load time. In a small level, plug-ins are implemented by extending specific interfaces that
adhere to a non-preemptive multitasking protocol from the eclipse environment.

Figure 4 Eclipse Platform Architecture (extracted from (International 2003) Figure 2)

Finally, a publish/subscribe system that uses the concept of plug-ins is YANCEES (Silva-
Filho, deSouza et al. 2003; Silva-Filho, Souza et al. 2004). In YANCEES, plug-ins are used to
augment the subscription, notification and protocol languages, being dynamically loaded in re-
sponse to subscriptions that use commands implemented by those plug-ins. YANCEES also al-
lows plug-in composition in the implementation of more complex subscription commands, which
improves reuse, copes with footprint control, since plug-ins can be installed or removed as neces-
sary, and provides extensibility.

Applicability to publish/subscribe. As exemplified by the YANCEES notification service,
plug-ins can be used to extend the subscription, notification and protocol models, by defining new
commands and features in these models. The runtime characteristic of plug-ins allows their load

4 Apache web server: http://www.ics.uci.edu/~fielding/talks/apache98/
5 Netscape Gecko Plugin API: http://devedge.netscape.com/library/manuals/2002/plugin/1.0/

UCI-ISR-05-8 - May 2005

 32

when necessary and the evolution of the infrastructure at runtime. It also copes with configurabil-
ity, allowing the installation and un-installation of plug-ins in order to cope with requirements
such as application foot-print.

Table 7 Plug-in based software development summary
Approach/technique Plug-in based software development

Pros Plug-ins provide a model for modularization and application footprint control; they imple-
ment third-party extensions to software, plug-in runtime provides dynamic load and upgrade
capabilities.

Cons Are limited in their ability to support the modularization of non-functional requirements.

Ge
ne

ra
l d

es
cr

ip
tio

n

Examples Eclipse and YANCEES

Extensibility Provided by extension interfaces and supported by OO programming languages.

Programmability Almost any application can be defined with this model, where new plug-ins and their de-
pendencies can be programmed.

Reuse Supported in some approaches that allow plug-ins to be dependent on other plug-ins

Static variability At load time, when plug-ins are dynamically loaded and composed according to predefined
interdependencies

Dynamic variability Supported by the intrinsic ability of the model to install (load) or uninstall (unload) plug-ins at
runtime

Ve
rs

at
ili

ty

Usability The usability of the model is a function of the component model (plug-in model) and the
application API the plug-ins can use to extend the application. The ability to expose only the
necessary API for the development of plug-ins can improve the learnability of the applica-
tion, by hiding unnecessary details.

Publish/subscribe applicability As demonstrated by YANCEES, plug-ins can be used to implement subscription, notification
and protocol model extension, configurability and evolution.

7.7 Extensible programming languages
Finally, a recent trend that may improve the programmability of different systems, including

publish/subscribe infrastructures is the use of extensible programming languages. According to
Gregory Wilson (Wilson 2004), the next generation programming systems will allow their users
to define entire new kinds of programming languages and control how they are processed. They
will be able to accomplish this by the use of:

• Compilers, linkers, debuggers, and other tools that can be extended by the use of plug-ins;

• Programming languages that allow end users to extend their syntax;

• Programs that are stored as XML documents, that can be processed uniformly.

One of the main examples of how a programmable language can be customized to different ap-
plication domains is the LISP programming language. It allows users to define their own func-
tions and use them in their programs as first-class entities of the language. Another example is the
Java syntactic extender (JSE) (Bachrach and Playford 2001), which allows programmers to define
parameterized macros that are parsed into full snippets of Java code. Another example is JSP
(Java Server Pages)6 , which provides a preprocessor that converts XML tags into JavaScript code
that gets embedded in web pages implementing their visual dynamism. This language allows new
tags to be defined, with their correspondent JavaScript code. Finally, the Jakarta Tool Suite (JST)

6 Java Server Pages (JSP): http://java.sun.com/products/jsp/

UCI-ISR-05-8 - May 2005

 33

(Batory, Lofaso et al. 1998) provide a set of domain-specific languages and component-based
generations based on mixings.

In fact, an emerging approach to versatility, being used in different application domains, is the
combination of extensible languages such as XML (the Extensible Markup Language), and plug-
ins. This approach is usually motivated by the need to cope with different languages, tailored at
different application domains, that share a common infrastructure. Example of systems that use
this approach include the Aspect Oriented Markup Language and its aspect plug-ins (Lopes and
Ngo 2004), the XADL extensible architecture and its application-specific extensions and tools
(Dashofy, Hoek et al. 2005), the xMonVe language for event-based software monitoring (a.k.a as
MonArch) (Dias and Richardson 2003) and the YANCEES publish/subscribe infrastructure. All
those systems are driven by the need to provide a generic infrastructure that can be customized
for specific application domains. Another commonality is the existence of configuration lan-
guages, used to install and declare dependencies of plug-ins (or components) used in the infra-
structure, and interaction languages (architectures in XADL; monitoring languages in xMonVe;
subscription, notification and protocol languages in YANCEES; and domain-specific aspect lan-
guages in AOML), that allow end-users to interact with the system.

Strengths. Allows the implementation of domain-specific commands and abstractions into
regular or domain-specific programming languages. Besides the benefits inherited from the plug-
in based development, this approach allows the combination of the extensibility of a language,
which may be provided by extensible languages such as XML.

Limitations. Besides the limitations of the plug-in based development, previously described,
this approach requires an understanding of both the extensible language and the plug-in model of
the infrastructure. There is also an overhead of the infrastructure that needs to deal with the ade-
quate matching (or parsing) of the extensions in the language with the extensions implemented by
the plug-ins.

Another disadvantage of providing language syntax programmability is in the cognitive gap be-
tween what programmers write and what they debug. Moreover, as what happens with compo-
nents, those macros or plug-in components may not encode or perform exactly what is needed by
the programmers, forcing their customization of those commands/extensions to particular needs
(Wilson 2004).

Example. In the publish/subscribe domain, YANCEES is an example where different subscrip-
tion, notification and protocol languages need to be supported in order to cope with heterogene-
ous application domains. For each set of commands in YANCEES, a new plug-in can be defined
to implement its functionality. The infrastructure is then responsible for matching the language
with installed the plug-ins. In YANCEES, the matching between plug-ins and the extensions in
the language is coordinated by parsers, a plug-in registry, and factories.

Applicability to publish/subscribe. This approach is particularly attractive to pub-
lish/subscribe infrastructures since it combines the extensibility of languages such as XML with
the runtime change and dynamic characteristics of plug-ins, allowing a combined evolution of the
subscription, notification and protocol languages with the components that implement those fea-
tures in the infrastructure.

UCI-ISR-05-8 - May 2005

 34

Table 8 Extensible programming languages summary
Approach/technique Extensible programming languages

Pros Allows the implementation of domain-specific commands in different languages. The use of
XML and plug-ins work together in providing extensibility and dynamism to the model

Cons Need consistency mapping between extensions in the language and their plug-in imple-
mentations. Cognitive gap between extensions and actual implementation.

Ge
ne

ra
l d

es
cr

ip
tio

n

Examples YANCEES as the publish/subscribe example, as well as AOML, xMonVe and XADL.

Extensibility Provided by a combination of languages and infrastructure implementations, usually pro-
vided by XML and plug-ins on both applications and tools

Programmability Provided by the plug-in based software engineering.

Reuse Reuse of the extensions in the language or the infrastructure is promoted by the plug-in
oriented architecture

Static variability Supported by the ability to configure the system with plug-ins and extensible languages at
load time.

Dynamic variability Supported in the plug-in level by the intrinsic ability of the model to install (load) or uninstall
(unload) plug-ins at runtime. May be supported in the language level through the use of
XML, for example.

Ve
rs

at
ili

ty

Usability The usability of the model is a function of the component model (plug-in model) and the
application API the plug-ins can use to extend the application.

Publish/subscribe applicability As demonstrated by YANCEES, plug-ins and extensible languages can be used to promote
subscription, notification and protocol model programming and extension.

7.8 Open Implementations
Open Implementation, as proposed by Maeda et al. (Maeda, Lee et al. 1997) goes against the

wide spread software engineering principle of “black boxes”, or modules, proposed by Parnas.
According to Parnas, modules should expose only the necessary interface to allow its operation,
and hide its implementation (the secret) as much as possible from its users (Parnas 1972). This
principle, for example, is embedded in the concept of Abstract Data Types, which is one of the
fundaments for modern OO languages, and is the basis of CBSE (Component-based Software
Engineering). As noted by Garlan et al.(Garlan, Allen et al. 1995), and restated by Kiczalles
(Kiczales 1996), the reason black box abstraction does not always work is that the best implemen-
tation for a module can only be determined if the developer knows, before hand, how the module
will be used. In order words, it is hard to predict all possible uses of a module. Fact that makes
modules be designed with special purposes in mind. Hence, according to Kiczalles, if a generic
approach is adopted, and modules are implemented in a generic way, they may not fit completely
with the software specification this module will be part of.

Open implementation approaches this problem by designing modules that can be adapted or
changed to accommodate the requirements imposed by different applications they may be used at.
It strives to reach a compromise between the advantages of the “black box” principle and the total
access to the module internals. The idea is then to provide modules with alternative implementa-
tions that can be tuned according to their use. This is accomplished by a separation of control: in
addition to the usual (primary “black box”) interface or API, the component should provide a tun-
ing (select strategy) interface that allows the change of its internal strategies according to the
problem to be solved (in other words, the context the component will be used at). Additionally, if
the available strategy implementations are not adequate for the problem, an optional interface is

UCI-ISR-05-8 - May 2005

 35

defined that allows the developers to provide their own strategy implementations, thus adapting
the component to their needs. A methodology for the analysis and design of systems according to
this approach is described here (Maeda, Lee et al. 1997). A range of mechanisms that can be used
to implement this strategy is described by Kiczalles at (Kiczales, Lamping et al. 1997).

Strengths. Open implementations cope with configurability and extensibility by allowing the
selection and modification of existing implementations to cope with different environmental re-
quirements. They can be seen as small-scale frameworks, in the component-level.

Limitations. Some drawbacks of this approach are the additional costs to design configurable
modules (or components), and the fundamental impossibility to design highly customizable com-
ponents. As happens in larger-scale frameworks, only certain parts of a component can be made
configurable. For example, using pure object-oriented programming, non-functional requirements
cannot be easily componentized such that those aspects can be added or removed form the sys-
tem. As will be latter discussed, some of those problems can be addressed by current AOP tech-
niques.

Example. An example of a RMI-oriented middleware that uses open implementation is Open-
Corba (Ledoux 1999). It uses computational reflection as a way to instrument the existing imple-
mentation and change the internal implementation of the ORB. An example of a pub-
lish/subscribe system that uses open implementation is FULCRUM (Boyer and Griswold
2004),which allows the implementation of different context-aware strategies for the commands
available in its subscription language, allowing the support for different domain semantics.
YANCEES also supports the replacement of certain parts of the system in order to cope with dif-
ferent strategies. In particular, it allows the use of different event dispatchers, permitting the
change of the event routing strategy (for example, from content-based to channel-based), by se-
lecting a different core at load time, or by switching from one to another at runtime.

Applicability to publish-subscribe. Systems such as FULCRUM and YANCEES illustrate
how open implementation can be useful in the context of publish/subscribe infrastructures. It can
be applied not only to the subscription language but also to the notification and protocol models,
which intrinsically have the notion of languages or commands, that can be added or removed as
necessary, or can be implemented in different ways by the extension of the language. The same
approach can be used to support different routing algorithms, as exemplified in YANCEES.
When it comes to non-functional requirements as security, reliability and others, this approach is
limited.

In the open implementation seminal paper (Maeda, Lee et al. 1997), computational reflection
was seen as a preferred mechanism to allow the selection and installation of new strategies in
open implementations. They were regarded as good strategies for the implementation of the con-
trol interface in such modules. Recently, however, many of the limitations of computational re-
flection have been addressed by AOP, which improved the design of open implementations.

UCI-ISR-05-8 - May 2005

 36

Table 9 Open implementation summary
Approach/technique Open Implementation

Pros Allows the adaptation of software components to different environmental requirements

Cons Extra effort to design open components, impossibility to modularize all aspects of a compo-
nent. No support for non-functional requirements.

Ge
ne

ra
l d

es
cr

ip
-

tio
n

Examples Open CORBA, FULCRUM and YANCEES

Extensibility New implementation strategies can be provided by the users, while preserving the module
interface.

Programmability Limited since the actual logic of the component is not designed to be changed, only specific
points.

Reuse The component logic is reused in different contexts, when tuned to different needs

Static variability At component load time, when component is tuned.

Dynamic variability Provided the component configuration interface that supports dynamism.

Ve
rs

at
ili

ty

Usability If well programmed, allow users to customize certain aspects of a component without the
need to understand its whole implementation, which improves the learning curve.

Publish/subscribe applicability In a component-based publish/subscribe system, it can be used to implement different
subscription, notification and protocol commands/strategies, or even to allow different rout-
ing strategies to co-exist or be replaced as necessary.

7.9 Computational reflection (meta-level programming)
Computational Reflection (or meta-level programming) is a programming technique that al-

lows a program to maintain information about itself (meta-information) and use this information
to adapt or change its behavior. In other words, a reflective system is one that is capable of rea-
soning about itself. This implies that the system has some representation of itself in terms of its
runtime programming structures. Reflection also provides access to the basic execution mecha-
nisms of the system through the Meta Object Protocol (or MOP). Using this protocol, meta-
programs can intercept and adapt the base-software execution environment, which may include
middleware mechanisms such as remote method invocation, marshaling and un-marshaling of
messages, thread creation and so on (Costa, Blair et al. 2000).

Reflection is supported by different programming languages in different levels. Introspection
allows read-only access to the program structure; whereas structural reflection enables dynamic
alteration of the program structure (for example custom implementation of serialization and de-
serialization of programs). Finally, computational reflection allows not only structural but also
runtime control customization (for example, through the use of smart class loaders). An example
of language that allows introspection is the Java language. In this language, commands such as
instanceof and methods such as .getClass() can be used to access the basic building blocks of a
software system, its classes. Anotehr language that allows introspection and structural reflection
is Guaraná (Oliva and Buzato 1999), permitting the definition of whole meta-level programs.
Both can be used in the implementation of middleware.

Strengths. Reflection is a powerful mechanism that allows the fine-grained extension of appli-
cations by means of meta-programs, allowing, for example, the implementation of mechanisms to
assure real-time constraints, perform logging, enforce security policies, collect performance data,
and so on.

UCI-ISR-05-8 - May 2005

 37

Limitations. A drawback of such approach (especially structural reflection), however, is the
potential performance and software integrity side effects. In terms of performance, there is a cost
associated to the meta-level protocol, and the instrumentation of code to allow the interception of
method calls. When used in a generalized way, in many parts of the code, the MOP can slow
down the application. Violations of software integrity are another problem (Venkatasubramanian
2002). This can happen when software behavior (or contracts) is accidentally altered by meta-
programs or even due to incompatibilities between those meta-programs (composabilty issues).
Since the debugging of such applications is harder, those errors may also be hard to track. This is
a consequence to the fact that the reflection mechanism itself does not impose restrictions on
when and how to extend the system: every point in an application is a potential extension point.
Hence, in order to improve its usability, it must be supplemented by architectural restrictions in
the system or even software patterns as proposed by (Gutierrez-Nolasco and Venkatasubramanian
2001). Another problem with computational reflection is the need for deep knowledge of the
software internals. One must know which points of the software to instrument, according to their
function. Finally, in general terms, meta-programs operate at a level of abstraction above pro-
gramming languages, which often makes it difficult to write correct, easily, readable, maintain-
able code.

Example. One example of a middleware system that uses reflection is Open ORB (Costa, Blair
et al. 2000). Open ORB uses introspection and structural reflection, allowing the ORB to be static
and dynamically configurable, as well as programmable and extensible. The basic idea is to pro-
vide a bare implementation that can be extended with new features as needed by different appli-
cations. This is performed by intercepting and modifying the connections between the main com-
ponents of the ORB, an approach similar to that used by Aspect-Oriented programming (that will
be further discussed).

A publish/subscribe system that uses reflection to be adaptable is ADEES (Vargas-Solar and
Collet 2002). It supports introspection by keeping information about the installed components
(subscription operations), allowing their composition at runtime in order to perform different
sorts of event filtering, which is orchestrated by the Event Manager, a special component of the
system.

Another example of use of reflection is YANCEES. In YANCCES, a special component, the
architecture manager supports introspection; it keeps a registry of all installed components, allow-
ing the installation of new plug-ins at runtime by the use of the factory design pattern (differently
than structural reflection). This information is used to load plug-ins at runtime, by the subscrip-
tion, notification and protocol parsers.

Applicability to publish-subscribe. Examples such as ADDES and YANCEES shows the
ability to use of introspection to help in the dynamic composition of commands in subscriptions.
Since many aspects of the strengths of computational reflection are now found in AOP (Aspect
Oriented Programming), the use of meta-object programming (especially structural reflection) for
middleware extensibility have declined on the last years on behalf of AOP. In fact, more recent
systems such as FACET use AOP instead of reflection to achieve the extensibility characteristic
that would be otherwise implemented by using structural reflection. More details on the use of
AOP will be further discussed.

UCI-ISR-05-8 - May 2005

 38

Table 10 Meta-level programming summary
Approach/technique Computational reflection (or meta-level programming)

Pros Allows fine-grained extension of applications, and implementation of cross-cutting concerns
such as real-time constraints, logging and security.

Cons Performance degradation, potential to break of software integrity, deep knowledge of the
application is required which may reduce the maintainability of software

Ge
ne

ra
l d

es
cr

ip
tio

n

Examples Structural reflection: Open ORB; introspection: ADEES and YANCEES

Extensibility Extensions to the base-program can be implemented as meta-programs, extending existing
software behavior

Programmability New behavior can be implemented in the meta-level, using the existing base-level applica-
tion as a start point

Reuse Base code reuse: the same base code can be augmented with different meta-programs.
Meta-program reuse: Meta-programs can also be modularized to allow their use in different
context, fostering reuse.

Static variability Supported by compilers: Meta-programs can be statically combined allowing the addition
and removal of functional and non-functional requirements to applications, allowing the
implementation of variability policies.

Dynamic variability Dynamic meta-object protocols exist that allow the instrumentation of code at runtime by
loading/unloading meta-programs and linking them to the base code.

Ve
rs

at
ili

ty

Usability One of the problems of this technique is the lack of usability of some implementations. The
strategy must be supported by compilers and tools to allow the proper instrumentation and
testing of the base code. Meta-level programs can be hard to understand.

Publish/subscribe applicability Can be used to implement new extensions to existing software by intercepting the commu-
nication between modules in a publish/subscribe infrastructure. Introspection is used by
applications such as YANCEES and ADEES to load and combine different subscription
commands.

7.10 Feature-oriented programming
The concept of feature-oriented programming encompasses techniques that allow the modu-

larization of different non-functional requirements, allowing their selection and composition.
Featrure-oriented programming techniques stem from the observation that in the development of
applications, separate concerns such as security, logging, persistency and other “ilities” are hard
to modularize. They are hard to be implemented as a single module (or component) that can be
added or removed from an implementation as necessary. In paradigms such as pure object-
oriented programming (OOP), different “cross-cutting” concerns become entangled in code
across many modules, which in many cases are forced to implement the same concern over an
over. As a consequence, the maintainability of software is highly jeopardized since the addition of
a new concern such as security, implies in the update of different parts of the code, residing in
many objects throughout the implementation. As a result, whenever new crosscutting concerns
need to be implemented in the system, the costs associated to code understandability, and main-
tainability increase (Lopes 2002).

7.10.1 Aspect-oriented programming (AOP)
AOP complements OOP and leverages concepts such as open implementation and meta-level

programming, by providing a programming paradigm that allows the modularization of cross-
cutting concerns and the integration of these aspects to the program. One of the main contribu-

UCI-ISR-05-8 - May 2005

 39

tions of AOP was to allow the separation of concerns, which was not possible in traditional Ob-
ject-Oriented Programming. AOP solves the software entanglement problem by modularizing
individual concerns in what was called aspects. Aspects are modular units of cross-cutting con-
cerns which are associated with a set of classes of objects. Aspects can be composed or weaved to
the main software on specific joint points. Joint points are well defined points in the software
static structure and its dynamic execution control flow. Examples of joint points include method
calls (invocations) and field accesses (read/write). Advices are method-like implementations that
are executed whenever a joint-point is reached in the program execution. Thus, aspects comprise
both the joint points and advices. In other words, aspects are defined in a specific programming
language (the aspect language) and are interwoven in an application with the help of special com-
pilers.

For example, AspectJ (Kiczales, Hilsdale et al. 2001) is an aspect weaver (or compiler) that al-
lows the definition and weaving of aspects in Java programs. An example of aspect defined with
AspectJ is provided in Figure 5 as follows. In this example, the aspect forces the refresh every
time one of the methods in Line or Point objects are invoked. The aspect, which otherwise would
be part of the methods in both classes, can be defined separately, and implemented as an advice,
improving clarity and reducing code duplication.

Figure 5 Example of an Aspect defined in AspectJ 7

With the recent availability of aspect-oriented languages, parsers and weavers such as AspectJ,

AOP has become very popular, being used in the implement non-functional requirements and
cross-cutting concerns such as: logging, debugging, security, as well as software-wide policies
and rules such as architectural constraints, coding conventions and so on. Its potential is still to be
fully exploited in developing OO systems.

Strengths. AOP techniques allow the encapsulation (or modularization) of cross-cutting con-
cerns in the form of Aspects. In aspect-oriented languages, aspects are first-class entities that can
be weaved in and out a base implementation as necessary. Hence, besides allowing a much better
separation of concerns, and the solution of implementation entanglement problem, AOP provides
improved modularity and reuse of those non-functional concerns. Configurability also comes as a
consequence, as aspects can be weaved to the base code as necessary.

Limitations. As with the reflexive middleware, aspects can be defined to extend virtually part
of whole application, allowing the modification of every aspect of the system. Due to this white
box approach (more open than that proposed by open implementations), the extension of the sys-

7 Image source: http://www.theserverside.com/talks/videos/GregorKiczalesText/Figure.jpg

UCI-ISR-05-8 - May 2005

 40

tem requires extra knowledge of its implementation details, which contrasts with object-oriented
frameworks, that externalize only specific parts of the software. Moreover, AOP must rely on
additional tools and methods to regulate the definition and combination of the different applica-
tion concerns (or aspects) in a target application (Constantinides, Bader et al. 2000). Due to the
generality of aspect languages, and their ability to define pointcuts and advices in virtually every
part of the software, architectural constraints and dimensions must be observed in order to restrict
and guide their use. For using a fine-grained approach (to the level of specific method invoca-
tions), performance degradation is also an issue that must always be managed in such approaches.

Additionally, for allowing point cuts to be inserted virtually at everywhere in the code, AOP
should be carefully used. A non adverted use of this technique can break some good software
qualities enforced by OOP, such as decoupling, cohesion and textual locality. There is no protec-
tion such as available in strongly typed languages and on information hiding, when users are pro-
tected from themselves. Hence, its use is recommended for cases where OOP does not produce
good modularity.

Examples. In a recent work with RMI-oriented middleware, Zhang and Jacobsen (Zhang and
Jacobsen 2004) showed how to extract, model and implement the different functionalities of an
ORB as AOP cross-cutting concerns. The middleware was decomposed using in an approach
called Horizontal Decomposition (HD). The HD approach proposes the use of conventional OOP
software engineering techniques to provide a generalized implementation that provides a minimal
core on top of which aspects, implementing domain-specific features, are weaved. His work also
proposes some principles to be followed when decomposing such systems in aspects, and how to
apply aspects to produce product line families.

FACET (Hunleth and Cytron 2002) is an extensible and configurable and extensible implemen-
tation of the CORBA Event Service that was initially designed to allow the customization of this
service to address the strict footprint and real time embedded systems applications. FACET also
uses horizontal decomposition: a bare-bones implementation of CORBA-ES is augmented with
features modeled as aspects. Those features are weaved with one another in order to achieve a
customized implementation of the service.

An important problem faced by FACET is the management of conflicting aspects, i.e. aspects
that cannot be weaved together, in the final system. In FACET, one aspect can be incompatible
with another one, whereas a second aspect can depend on the installation of other ones. This de-
pendency and mutual exclusion problem is addressed by the use of a configuration manager.

Applicability to publish/subscribe. As demonstrated by FACET, and the HD approach, AOP
can be used to model and compose different non-functional requirements on top of a basic pub-
lish/subscribe infrastructure. The generalized application of AOP, however, including functional
requirements may have configuration and performance problems that can be better addressed with
other techniques such as composition filters, or even frameworks.

UCI-ISR-05-8 - May 2005

 41

Table 11 Aspect-oriented programming summary
Approach/technique Aspect-Oriented Programming

Pros Modularization of cross-cutting concerns and the configurability of those concerns into as-
pects (pointcuts and advices)

Cons May degrade performance and, if not properly used, may damage the software integrity.

Ge
ne

ra
l d

es
cr

ip
-

tio
n

Examples FACET

Extensibility Aspects can be defined to augment the behavior of the base implementation

Programmability Aspects can be used to add new behavior to the software, bypassing existing implementa-
tion if necessary

Reuse Non-functional requirements can be modularized as aspects, an aspect can depend on
another one, improving reuse.

Static variability Horizontal Decomposition can be used to strip-off or add new features into a base imple-
mentation, using aspect weaving mechanism. Thus, one can choose which aspects to add
or remove in an implementation, achieving configurability.

Dynamic variability Not currently supported buy languages as AspectJ but is being planned for next versions of
this tool.

Ve
rs

at
ili

ty

Usability The modularization of non-functional requirements can reduce code entanglement improv-
ing software understandability.

Publish/subscribe applicability Can be used to modularize many non-functional aspects of publish/subscribe infrastruc-
tures. Also copes with extensibility and configurability of current implementations but does
not address the interaction language extensibility (notification, subscription and protocol
models).

7.10.2 Composition Filters
Composition filters (or CF in short) (Bergmans and Aksit 2001) is an aspect-oriented pro-

gramming technique where different aspects are expressed by the use of Filters. Filters implement
declarative and orthogonal message transformation specifications that (Aksit and Tekinerdogan
1998). In other words, they extend conventional OO programming model, permitting the associa-
tion of a special function to one or more method calls in an object. Filters are used to manipulate
messages sent and received by an object, specifying conditions where those messages are ac-
cepted or rejected. They can also perform user-defined actions before and after a message is re-
ceived. Since the object observable behavior is determined by the messages it receives and sends,
filters associated to those methods are able to express a large set of concerns such as inheritance
and delegation, synchronization, real-time constraints, and inter-object protocols.

Filters are programmed using a uniform message manipulation language that can control
whether a message is delivered or not to an object. This language operates in terms of runtime
conditions or on the messages content. Different collections of filter types can be defined for each
application domain, implementing different domain-specific crosscutting concerns. Different fil-
ter instances can be associated to more than one object at the same time and can be composed one
after another for the expression of filter priorities. Filters provide strong encapsulation and repre-
sent modules that can be reused in different applications. New filter types can be implemented,
allowing their specialization to different application domains. They can also be automatically
generated and instrumented in the classes with the help of compilers such as ComposeJ
(Wichman 1999) . Filters can be composed both at runtime or at compile time. This is due to their

UCI-ISR-05-8 - May 2005

 42

declarative structure, uniform language and interaction mechanisms, that make them independent
building blocks.

For example, filters can be used to enforce access control policies, permitting certain users to
execute some methods in a file class, such as open() and write(), while forbidding other users
from invoking open(), read() or write() methods. As a consequence, the code that would perform
the access rights check, and otherwise would be replicated in each method, becomes part of the
filter, which is associated to those three different methods and is, by itself, a software module that
can be added or removed from the application as necessary.

If compared to AOP, filters provide an alternative way to implement pointcuts, advices, and
aspects that do not require any special protocol or modification in the target programming lan-
guage. Pointcuts are the methods being filtered and the regular expression on what methods to
allow and what to block. Advices are the operations that the filter object can before and after a
method call. On the same token, if compared to reflection, it provides an OO way to implement
the meta-object protocol, that intercept object messages, and the meta-level program, which is
embedded in the filter itself.

Strengths. Filters provide well-defined interfaces, and are implemented as orthogonal compo-
nents, that can be composed in any order. Those two characteristics increase their reuse and
adaptability. Filters can be implemented as regular objects in an object-oriented language, which
makes this method attractive for the implementation of AOP concerns in OO programming lan-
guages. They also have the advantage of supporting runtime change and composition in a more
principled way than aspects in AspectJ, since they implement predefined interfaces and can be
expressed in terms of OO software patterns such as wrappers, filters and chains of responsibility.

Limitations. It suffers from the same limitations of AOP, but with the potential of imposing
more restrictions to its use, for example, filter capability can be allowed only in certain points of
the program (by their use in frameworks for example), preventing its indiscriminate use.

Example. The same idea of controlling communication with filters that is applied in the small
in the case of individual objects, can be applied in the large, as the case of middleware compo-
nents. In fact Filman et al. (Filman, Barrett et al. 2001), for example, demonstrated how to extend
ORBs with non-functional requirements such as security and fault-tolerance using filters inserted
in the CORBA stubs and sleketons. This insertion is performed automatically using a modified
IDL compiler. Non-functional requirements are defined using OIF (Object Infrastructure Frame-
work), an extension to IDL that supports the expression of such concerns. With this approach, the
use of filters becomes transparent for the end user.

In the context of publish/subscribe infrastructures, filters are used in YANCEES to control the
input and output of events in the general publish/subscribe architecture, and in FNF to program to
add new services to the event queues. They can be used to enforce type checking, to provide per-
sistency to events, to enforce security policies and so on.

Applicability to publish/subscribe. As demonstrated by YANCEES, FNF and also by OIF,
filters are an interesting approach for publish/subscribe system, especially for the implementation
of policies, such as type checking, event ordering, persistency, and non-functional requirements
such as security.

UCI-ISR-05-8 - May 2005

 43

Table 12 Composition filters summary
Approach/technique Composition filters

Pros Provide well-defined interfaces in OO languages. They can be used to implement cross-
cutting concerns, and can be statically or dynamically composed.

Cons Same of AOP with the advantage of limiting its use to specific points of software.

Ge
ne

ra
l d

es
cr

ip
-

tio
n

Examples YANCEES, FNF, OIF

Extensibility Filters can be used to compose policies and implement aspects, keeping compatibility with
the existing system infrastructure.

Programmability Filters can also extend the behavior of software by controlling the communication between,
its parts, and implementing new functional and non-functional features

Reuse The composition characteristic of filters copes with reuse in different contexts as shown by
the FNF system.

Static variability By adding and removing filters, at object load time, one can configure the behavior of the
system.

Dynamic variability Supported by OO techniques such as filter design pattern and chain of responsibility.

Ve
rs

at
ili

ty

Usability The modularization of non-functional requirements reduces entanglement improving soft-
ware understandability. The use of software patterns and the native support in OO lan-
guages improves its comprehension.

Publish/subscribe applicability Can be used to modularize many non-functional and functional requirements of pub-
lish/subscribe infrastructures. Also copes with extensibility, programmability and both dy-
namic and static configurability of current implementations. Can be used in conjunction with
approaches that allow the extensibility of the subscription, notification, protocol and event
languages.

7.10.3 GenVoca (Stepwise refinement)
GenVoca (an integration of two projects Genesis and Avoca) (Batory and O'Malley 1992) is a

methodology of program construction inspired in the step-wise refinement methodology (Wirth
1971). It defines components called Layers that encapsulate a complete implementation of a sin-
gle design feature. A layer is implemented as a set of modularized classes. Those layers can be
composed to implement different applications that provide the features expressed in each layer.
The JavaLayers compiler, for example, implements the GenVoca model using the concept of
mixins (Cardone, Brown et al. 2002). Mixins are mini extensions in the form of types (or classes)
which super types are parameterized in a way similar to C++ templates or java and C# generics.
With this approach, a mixin can be used to extend any existing class (which is provided as a pa-
rameter), with a shared implementation (or characteristic). For example, a Lockable mixins which
provides methods lock() and unlock() could be defined as follows:
Class Lockable<T> extends T {
 Public lock() {…}
 Public unlock() {…}
}

The class Lockable extends the parameter class T to include the methods lock() and unlock().
This approach is also known as parametric polymorphism. Using this approach, the code for
lock() and unlock() methods are defined only once, in the mixin. Moreover, it permits existing
code to be extended without modifying it. Examples of layers include:

UCI-ISR-05-8 - May 2005

 44

class TCP implements TransportIfc {…}
class Secure <T implements TransportIfc> extends T {…}
class KeepAlive<T implements TransportIfc> extends T {…}

Hence, mixins introduces super class variability to traditional OO approaches. It also allows
features to be mixed and combined with one another, so new types can be defined. They defer the
definition of parent/children relation to the composition time, instead of the specification time, as
in the traditional OO approaches (Cardone and Lin 2001).

Based on this approach, GenVoca defines the concept of Realms, or modular sets of mixins,
representing usually cross-cutting and modular features in a system. These realms can be com-
posed by type equations defined in the JavaLayers language. Hence, in order to compose different
layers, JavaLayers provide the following syntax:
KeepAlive <Secure<TCP>> trans;
class TP extends KeepAlive<Secure<TCP>> { …}

The variable trans above is declared as a composition (or generation) of types; whereas the
class TP is an instance of this composed type.

AOP and GenVoca, even though differ in their approach and technology, are both designed
with the same intent, solve the entanglement problem, and the duplication of code and concerns
in OO software. Both allow the easy composition of features in software as a single component.
A comparison between GenVoca and AOP is beyond the scope of this paper, and comparison
between those approaches can be found here (Cardone 1999).

Strengths. GenVoca allows the encapsulation (or modularization) of cross-cutting concerns in
the form of mixins sets, or Realms, allowing their composition in the implementation of software,
coping with configurability, separation of concerns and reuse.

Limitations. The use of mixins has some drawbacks. The class hierarchies produced by the use
of mixins can generate deep class hierarchies; super class initialization is challenging since the
super class of a mixins is not previously known. Since incorrect use of mixings may happen,
compositions must be checked for correctness and, since recursive composition of types may also
happen, checking can become a challenging task.

Example. GenVoca has been used to re-implement the ACE (Adaptive Communication Envi-
ronment) ORB, and adaptive ORB that uses software patterns as its functional configuration
mechanism. The ORB was decomposed in layers that were afterwards composed to reconstruct a
full ORB. The use of mixings reduced the number of lines of code in the software and allowed
the definition of different ORB configurations. More details are described here (Cardone and Lin
2001). The results show improved scalability and better support for the evolution of the software
if compared to a more traditional framework approach.

Applicability to publish/subscribe. As the case with AOP and composition filters, the ap-
proach can be equally used to implement a large part of publish/subscribe system features. How-
ever, the extensibility of the subscription, notification and protocol languages is not addressed by
this and the other three approaches.

UCI-ISR-05-8 - May 2005

 45

Table 13 Mixins summary
Approach/technique GenVoca mixins

Pros Provide an approach for separation of concerns, modularization of non-functional features.
Allows composition and reuse based on the concept of mixins and realms

Cons Mixins can generate deep class hierarchies, which may jeopardize the understanding of the
software. It also requires an extra checking for correctness and compatibility.

Ge
ne

ra
l d

es
cr

ip
tio

n

Examples ACE ORB reimplementation using mixings

Extensibility The parameterized sub-typing promoted by mixin allows the extension of software while
keeping compatibility with existing classes

Programmability Programmability is more challenging in this approach since subclassing implies compatibil-
ity with existing classes. Mixins should be used in combination with other approaches to
achieve this goal. Cross-cutting concerns, however, may be programmed and waved into
the base code using this approach.

Reuse Non-functional requirements are easily modularized and can be reused across compatible
implementations i.e. Implementations that support the super-classes specified as realms.

Static variability Supported by the composition of realms into applications.

Dynamic variability Not supported

Ve
rs

at
ili

ty

Usability Modularization of non-functional requirements improves software understandability.

Publish/subscribe applicability Can be used to modularize many non-functional requirements of publish/subscribe infra-
structures. Also copes with extensibility and static configurability of current implementations.
Does not directly supports extensibility of the subscription, notification and protocol lan-
guages

7.10.4 Discussion
A potential problem in most of those approaches is the extreme freedom that they provide to

the application developer (especially in AOP and GenVoca). Even though the flexibility of these
approaches makes them suitable for a large set of domains, which is indeed a desirable feature,
they must be applied according to some principles and restrictions in order to fit each application
domain and prevent their misuse. According to John Guttag, “too muck knowledge is dangerous,
and encourages programmers to engage in global modifications and changes that are not local”.
Besides that, this may also issue in loss of performance since the mechanisms used to compose
cross-cutting concerns are many times costly in terms of runtime performance.

Additionally, one aspect that is not well addressed by these approaches, in the context of pub-
lish/subscribe infrastructures, is the extensibility and configurability of the subscription, notifica-
tion and protocol languages. All those models focus on the configuration, extension and pro-
gramming of functional and non-functional requirements at source-code level, and do not handle
extensions in the interaction level, which in the publish/subscribe context, is usually implemented
by subscription, notification and protocol languages. Hence, other approaches should be used to
address the interaction language extensibility.

7.11 Software Usability techniques
Usability as proposed by Nielsen (Nielsen 1993) is not a single attribute but a set of attributes a

system must have. Those attributes are:

UCI-ISR-05-8 - May 2005

 46

• Learnabilty: a system must be easy to learn so the user can start working with it with
few or none previous tutoring;

• Efficiency: the system should be fast in accomplishing the work it is supposed to per-
form;

• Memorability: the necessary steps to operate the system should be easy to memorize,
so that a casual user is able to return to the system after some period of time, without
needing to learn everything back again;

• Errors: the system should have a low operational error rate and, if an operational error
happens, it should be easy to recover. Catastrophic unrecoverable errors must not oc-
cur;

• Satisfaction: the user should have a pleasant experience using the system, they should
like it.

This definition proposed by Nielsen is focused on GUI-based applications, usually designed to
be operated by non-programmers. When it comes to software engineering, however, the concept
of usability is slightly different. It not only refers to the software tools used throughout the devel-
opment of software such as code and document editors, CM systems, CASE tools and so on, but
also refers to the artifacts being produced, especially the source code, which middleware systems
are part of. In the specific case of middleware, usability must be especially considered with re-
spect to its APIs (Application Programming Interfaces), through which the infrastructure exter-
nalizes its services to distributed applications programmers. Hence, for software developers’
point of view, usability can be described in terms of internal attributes of a system that affect the
developers’ performance and productivity in understanding, maintaining and evolving the soft-
ware.

In the scope of this paper, in terms of middleware infrastructure for publish/subscribe, two
main usability issues arise. One is the usability in terms of the system designers which, based on
the properties described in the versatility definition section, need to define, configure, maintain
and deploy a versatile publish/subscribe middleware. The other aspect is of the systems users, in
this case the middleware API clients, that will rely on the services of the versatile middleware to
support their application. Since we are dealing with middleware, both classes of users are devel-
opers and, at some cases, the same group of people can be at the same time middleware pro-
grammers and clients of the system. In this context, some approaches to usability include API
evaluation and design techniques following described.

7.11.1 API evaluation techniques
Some usability design and evaluation techniques, focused on libraries, and their APIs, as well

as programming languages are defined here (Clarke 2004). According to Steven Clarke, one of
the main problems in designing APIs are wrong affordances, or misleading assumptions about the
expected outcome of an interface call. For example, a not so usable API would not indicate by its
signature (or afford according to psychological jargon), that the passing of a null parameter in-
stead of a file would create a default file instead. A proposed remedy to this problem is user-
centered design. In order words, the API must reflect the tasks the users must accomplish and not
the implementation details behind its interface. To address those issues Clarke proposes a cogni-
tive framework expressed as a set of good properties an API must have. Those properties are
formulated in terms of questions that must be answered during a cognitive walkthrough session
involving users and the API. In other words, Steven Clarke proposes a set of 12 measures a good
API design that allows the determination of what users expect from the API and what it actually
provides. The closer those two factors are, the better the API is in meeting the user’s needs.

UCI-ISR-05-8 - May 2005

 47

The results of this approach vary according to the expertise and type of the developer. Another
issue is that it may not always be easy to determine the user’s needs with respect to the API. In
other words, this technique requires a well know user model in order to produce good APIs. One
possible solution to this problem is to define different APIs, one for each kind of user (occasional
user, more frequent user, expert) and so on, which requires extra implementation work.

7.11.2 API design guidelines and principles
According to Norman (Norman 1988) for the design of usable systems, some principles must

be observed such as adequate visibility, conceptual model, mapping and feedback. The good visi-
bility principle states that the software must externalize its possible actions, states and alternatives
to the accomplishment of the tasks it performs; an adequate conceptual model is a set of abstrac-
tions that help the users understand the system and its behavior. It must be complete and consis-
tent with what the system really does. The mapping principle states that actions performed in the
system must be followed by a natural (expected) result; and finally, the feedback principle states
that the system must provide continuous feedback in response to the actions being performed in
the system.

According to Jacques (Jacques 2004) “A usable API reduces the time it takes to learn how to
program against it (learning time), it reduces the number of lines of code to write (execution
time), the number of wrong interpretations and misuses (error rate) and allows the easy under-
standing of code although written a long time ago (knowledge retention). Consequently, the pro-
grammer is happy (user satisfaction!) “. Based on those principles, he proposes some API design
guidelines as follows: emphasizes the visibility of important things; minimize the number of visi-
ble elements, avoid the use of modes (actions dependent of system states), use of simple func-
tions; employ user domain concepts; consistency; use of the right abstraction level; avoid ran-
domness, use natural mapping, fail as close to the error as possible; provide detailed debug mes-
sages; and improve feedback. More details and examples are described here (Jacques 2004).
Some other API design suggestions for middleware usability are described here (Bernstein 1996).

7.11.3 Usability aspect of software versatility techniques
The success of many of the software versatility techniques previously described in this survey

can be attributed to their ability to achieve a balance between expressiveness and abstraction. In
special, they improve the comprehension of the source code, by reducing source code entangle-
ment, summarizing design concepts or encapsulating functionality in standardized ways in order
to be reused. In order to be reused, however, software must be well documented and designed, in
other words, it must not be useful but usable for its purpose (McLellan, Roesler et al. 1998).

AOP. One of the motivation factors for the development of AOP and AspectJ, was the awk-
wardness of using meta-object programming to implement aspects. In other words, the lack of
usability of such approach. According to Lopes (Lopes 2002), the power of AspectJ as a pro-
gramming language is in its richer set of structural and temporal referencing that follows that of
natural languages. AspectJ allows those constructs to be defined in a way that seems useful to
practitioners, allowing the encapsulation of modules in such a way that allows their addition and
removal from programs by the use of conditional compilation. According Lopes, “writing a trac-
ing aspect is like writing a different chapter in a book”.

Software patterns. Software patterns bridge the gap between frameworks and system libraries
by providing higher level solutions to common problems. One of the main contributions of soft-
ware patters is a catalog where researchers and practitioners can refer to common solutions to
problems, such that, when a solution is non-trivial, they learn form optimized solutions to the
problem. In a software pattern catalog, examples, counter-examples and trade-offs are presented,

UCI-ISR-05-8 - May 2005

 48

allowing the choice of the pattern to each solution. These high-level concepts also help in source
code documentation, improving its understanding and design, that now happens in terms of
higher-level concepts (instead of mere classes) (Gamma 2001). The idea of patterns have been
applied not only to object-oriented programming but also to AOP and other advanced program-
ming techniques.

Component and Plug-in oriented software development. From the usability perspective, the
use of components forces the design for extensibility and programmability, hiding irrelevant ap-
plication details from the software developer, and decomposing a system into composable mod-
ules. The use of components, and especially plug-ins allows the application to be customized and
incremented in small and modular steps. In contrast to other kinds of modularization, the devel-
opment of plug-ins usually produce systems that do not require changes in different parts of the
application, which facilitates their development.

7.12 Versatility techniques summary
A summary of the surveyed techniques that highlight the main versatility dimensions that they

address is presented in Table 14 as follows.

Table 14 Summary of versatility techniques
Technique Extensibility Programma-

bility
Reuse Static Vari-

ability
Dynamic Vari-

ability
Usability

OO Program-
ming

Inheritance and
method over-
load

Object-based
programming

Inheritance,
associations
and aggrega-
tions

Interfaces,
abstract
classes and
specialization

Late binding Abstract data
types

Software
Frameworks

Hotspots and
adaptation
points

Hotspots and
adaptation
points

Of the frame-
work logic

Hotspots and
adaptation
points

Dynamic hot-
spots and
adaptation
points

Information
hiding

Software
Patterns

Extensibility
patterns

Programmabil-
ity patterns

Of design
solutions

Software con-
figuration pat-
terns

Dynamic vari-
ability patterns

Catalog of
common solu-
tions

Software
Refactoring

Not directly
supported

Not directly
supported

Of old source
code

Direct source
code modifica-
tion

Not supported Provided by
automated
tools

CBSE Supported by
OO techniques

Supported by
OO techniques

Of components By component
composition
and linking

By component
containers that
provide this
feature

Information
hiding, compo-
nent model and
containers

Plug-in based
software de-
velopment

OO program-
ming lan-
guages and
extension
interfaces

Supported by
OO techniques

Of plug-ins At load-time
plug-in compo-
sition (interde-
pendencies)

By the plug-in
runtime that
allows dynamic
loading/
unloading and
upgrade

Modularization,
reuse and
information
hiding

Extensible
programming
languages

Provided by
plug-ins and
extensible
languages
such as XML

Provided by
plug-ins

Of plug-ins and
language ex-
tensions

Provided by
the plug-in
model

Provided by
the plug-in
model

Function of the
abstraction,
composition
and extensibil-
ity of language

UCI-ISR-05-8 - May 2005

 49

Open imple-
mentation

Of components
by allowing
new strategies

Limited since
the module
interface is
preserved

Of components
main logic and
interface

At load time
when compo-
nent is tuned/
configured.

Provided by
the configura-
tion interface

Partial informa-
tion hiding

Meta-level
programming

Of individual or
group of ob-
jects, by the
meta-program

Of cross-
cutting con-
cerns, by the
meta-program

Of base code
and meta pro-
grams

Compilers can
link together
different meta-
programs to
the base code

Meta-object
protocols allow
load/unload
and dynamic
link of meta-
programs

Low usability:
meta-level
programs can
are hard to
understand.

AOP Of objects and
programs with
aspects

Of cross-
cutting con-
cerns with
aspects

Of non-
functional
requirements
modularized as
aspects

By the use of
aspect compo-
sition tech-
niques

Not currently
supported by
AspectJ but
planned for
next versions.

Reduces soft-
ware entan-
glement and
modularizes
non-functional
requirements

Composition
Filters

Of objects by
intercepting
method calls
using OO
programming

Of cross-
cutting con-
cerns by inter-
cepting com-
munication
using OO.

Of filters and of
cross-cutting
concerns

By adding or
removing filters
at load time for
each object/
method

Supported by
the filter, chain
of responsibility
and other
software pat-
terns

Natively sup-
ported by OO
languages

GenVoca Of collections
of objects
based on mix-
ins and OO
programming

Of non-
functional
concerns using
OO program-
ming with
mixins and
realms

Of non-
functional
requirements
that can be
easily modular-
ized into mixins
and realms

Of non-
functional
concerns using
mixings and
realms

Not supported Modularization
of non-
functional
requirements.

Once identified the main techniques that can be applied to provide versatility, a next step
would be to compare them with one another. The comparison between those techniques, however,
requires a detailed comparative study of their use in the publish/subscribe domain, which is be-
yond the scope of this paper. On the absence, in some cases, of systems that apply those tech-
niques to publish/subscribe, we can only present them here as alternative approaches and exem-
plify them, as we did, with their use in related middleware fields, such as RMI-oriented middle-
ware.

8 Other versatility approaches
This section present alternative approaches to the versatility problem, especially addressing is-

sues related to configurability and variability. They take a more holistic (application-wide) view
instead of just focusing on the infrastructure alone.

8.1 Model-driven approaches
Model driven approach strives to separate program specification from the technology that im-

plements it. This is achieved by using refinements and mappings to transform specifications in
actual implementations. In this context, middleware becomes a component in the overall system,
that must be configured to attend the needs of the application.

OMG promotes the use of Model Driven Architectures (MDA) as a way to decouple the appli-
cation specification from its particular implementation on different middleware platforms. The
approach maps platform independent models defined in UML to middleware-specific implemen-

UCI-ISR-05-8 - May 2005

 50

tations. The idea is to better isolate the application specification from the specifics of different
middleware, improving portability. The mapping from independent specification to middleware is
automated, and performed with the help of platform-specific models.

A similar idea is proposed by Ckarnecki et al. (Czarnecki and Eisenecker 1999). He defines
Generative Programming as an approach for generating customized components and systems. It
combines techniques such as AOP, Domain Specific Languages (DSLs), Generic Programming
and Configuration knowledge to achieve separation of concerns (AOP). The idea is the creation
of generic source code libraries that can be automatically customized and composed in order to
implement domain-specific systems. Domain Specific Languages are used to program the appli-
cation in a domain-specific language, using domain constructs (for example mathematical pro-
gramming); Generic Programming allows the definition of parameterized data structures by the
use of templates and generics (for example STL – standard template library -- from C++); and
AOP to allow the implementation of cross-cutting concerns. The whole idea is to automate the
code generation from the DSL to the final program using the generalized implementations that,
with the help of domain knowledge, are automatically configured and assembled together in order
to build the solution to that particular problem.

An example of a publish/subscribe service configuration model, used to support the communi-
cation of CORBA components is descried in (Edwards, Deng et al.). It defines a model-driven
approach to deploy event-driven applications, and configure the publish/subscribe service, with
respect to distribution and QoS, to support those applications. The whole idea is to automate the
configuration of the publish/subscribe service in terms of how the channels are federated, and
which parameters are selected (push versus pull model, persistent channels, and other CORBA-
ES options) on those services.

8.2 Service-oriented architectures
Service-oriented architectures (SOA) are used to implement complex applications by the inte-

gration of distributed services, as the case with web services. A service is an application external-
ized through standardized programmatic interfaces, a façade in the software patterns jargon, or a
component in a software architecture point of view. Services hide the implementation of more
complex systems behind well defined interfaces, which should be operated according to a richer
semantic protocol. Hence, service-oriented approaches are not middleware extensibility ap-
proaches, but a composition and integration strategy that combines distributed applications. For
example, web services8 externalize APIs for different e-businesses and applications through the
use of standardized and HTTP-based protocols such as XML-RPC, and SOAP, published in an
standardized way using the web service description language WSDL. The interconnection of ser-
vices is helped by the use of other services such as UDDI

9 Survey of existing publish/subscribe infrastructures
After presenting the concept of versatility and surveying existing software approaches that help

in addressing those properties, we proceed to present existing publish/subscribe infrastructures,
presenting them according to the generalized design framework from section 5.2. In do doing, we
expect to make explicit the dimensions those systems address and the variability they require in
each one of those dimensions. The goal is not only to classify existing systems according to this
new framework, but also to illustrate the diverse set of requirements publish/subscribe infrastruc-
tures need to support due to their use in different application domains.

8 http://www.w3.org/2002/ws/

UCI-ISR-05-8 - May 2005

 51

In the next section, we present a table relating all those systems and how they can be used to
address the proposed software versatility properties.

9.1 CORBA-NS
The CORBA Notification Service (CORBA-NS in short) (OMG 2002) is an extension to the

CORBA Event Service (CORBA-ES in short) (OMG 2001) that allows the definition and man-
agement of different event channels between CORBA distributed objects. It supports topic and
channel-based routing, as well as content-based filtering of events. Events can be typed or un-
typed, persistent or non-persistent. Subscriptions allow sequence detection and content-based fil-
tering. The event delivery can be performed using pull and push approaches. Secure channels can
be established between publishers and subscribers. Scalability is addressed using federation of
servers. The CORBA-NS provides a very comprehensive set of features since it is designed to
support the largest set of applications as possible. A summary of its features are described in the
following table.

Table 15 Design dimensions for the CORBA Notification Service
 CORBA Notification Service

Event Model Record-based

Subscription Model Topic-based, channel- based, and content-based filtering

Notification Model Push and pull

Timing Model Total order when using channel and topic-based subscriptions.

Resource Model Centralized on the server(s). All event processing and filtering is performed in the server-side

Protocol Model Interaction protocol: besides the conventional publish/subscribe API, it provides secure connec-
tions, and polling protocols to retrieve persistent events.

Infrastructure protocols: server federation and fault tolerance mechanisms are used to connect
distributed servers, a time synchronization protocol can also be provided.

Versatility Model The CORBA-NS standard does not specify versatility mechanisms. Some implementations dis-
cussed in section 7, propose different versatility approaches to CORBA ORBs

9.2 Java Message Service (JMS)
The JMS standard from Sun (Sun Microsystems 2003) is based on the OMG CORBA-ES stan-

dard, being especially designed for Java and EJB (Enterprise Java Beans) integration and com-
munication. It supports topic and channel-based event subscription models; events are represented
as records with predefined set of attributes. Hence, event routing is performed through distributed
queues between event producers and their consumers. Some implementations of this standard
support event persistency and transactions as additional properties of the channels. Different noti-
fication policies such as pull and push are also supported.

UCI-ISR-05-8 - May 2005

 52

Table 16 Design dimensions for the Java Message Service
 Java Message Service

Event Model Record-based

Subscription Model Topic- and channel-based

Notification Model Push and pull

Timing Model Total order of events between producers and consumers guaranteed by the event queue

Resource Model All processing is performed in the server side

Protocol Model Interaction protocols: besides the regular publish/subscribe, it allows transactions to be defined

Infrastructure protocols: not specified

Versatility Model OO Programming – direct source code modification, or application level implementation of extensions

9.3 READY
The READY (Reliable Available Distributed Yeast) notification server is a general-purpose

service based on YEAST event action system (Krishnamurthy and Rosenblum 1995). READY
incorporates most of the functionality of Yeast (further described), with the ability to handle
compound event matching (and other event constructs), subscriptions that matching over both
single and compound event patterns; communication sections that manage quality of service
(QoS) and event ordering; as well as group subscriptions. Event abstraction – the creation of
events based on the combination of attributes of other events is also provided. The system also
supports the temporary disconnection of sections, coping with mobile applications and fault toler-
ance. READY supports event types and subtypes, allowing users to specify their own hierarchy of
events.

Table 17 Design dimensions for the READY Notification Service
 READY

Event Model Recod-based with support for event typing and hierarchies

Subscription Model Content, topic and channel-based subscription models are supported as well as advanced event
processing features (sequence, abstraction)

Timing model Total order of events

Notification Model Push and pull

Resource Model Provides both: server-side and client-side subscription evaluation

Protocol Model Interaction protocols: Mobility support (disconnection and reconnection primitives), authentication
and polling protocols

Infrastructure protocols: Server federation and migration of event processing from server to client
side

Versatility Model OO Programming – direct source code modification only

9.4 Siena
The Siena content-based router (Carzaniga, Rosenblum et al. 2001) provides a Internet-scale

event notification network implemented as a federation of servers; The subscription model pro-
vides content-based filtering, and event sequence detection. The event model is tuple-based and

UCI-ISR-05-8 - May 2005

 53

the notification model implements a best effort event delivery, implying in no event delivery
guarantee. Siena applies advanced subscription advertisement and event routing algorithms to
allow events published in one side of the network to be routed to interested parties that post sub-
scriptions in different nodes (servers) of the network. Current version guarantees partial event
ordering.

Table 18 Design dimensions for the Siena Notification Service
 Siena

Event Model Tuple-based

Subscription Model Content-based

Timing model New implementations support partial order of events when federated configurations are used, older
implementations apply best-effort approaches

Notification Model Push

Resource Model Server is federated and all processing is performed in the server side

Protocol Model Interaction protocols: Supports only the common publish/subscribe interaction

Infrastructure protocols: Server federation and advanced routing protocols for servers interconnec-
tion, as well as partial event ordering

Versatility Model OO Programming: open-source distribution, allowing modification of the source code; Provides a
minimal publish/subscribe core that can be used by the client application to implement more ad-
vanced features such as event abstraction ex: used by YANCEES and FULCRUM.

9.5 Herald
The Herald project from Microsoft (Cabrera, Jones et al. 2001) implements a distributed event

routing network that provides Internet-scale content-based routing. The scalability is achieved by
the federation of servers. Resilience to failure, self configuration and administration, timeliness
(human acceptable delays); support for disconnection of publishers and subscribers are provided;
security (access control and authentication) and partition communication are also supported.
These characteristics are mainly accomplished by a design on loosely-coupled components called
rendezvous points which are federated. Each component is designed to handle failure conditions
and to rely as less as possible on others. Replication of rendezvous points cope with scalability
(uses load balancing) and fault-tolerance (uses store and forward of events when connection is
reestablished). Herald does not support filters or advanced query languages. It also does not guar-
antee event ordering as Siena.

Table 19 Design dimensions for Herald
 Herald

Event Model Tuple-based

Subscription Model Content-based

Timing Model Best effort, no guaranteed event ordering.

Notification Model Push

Resource Model Servers are federated and all processing is performed in the server side

Protocol Model Interaction protocols: Supports only the common publish/subscribe interaction

Infrastructure protocols: Transparently provides fault tolerance, replication and composition be-
tween rendezvous points

Versatility Model API provides a simple pub/sub core, and closed source code (commercial distribution) requiring
implementation of new features in the client application.

UCI-ISR-05-8 - May 2005

 54

9.6 Elvin
The Elvin notification server (Fitzpatrick, Mansfield et al. 1999) was initially designed as an

event routing infrastructure to support the development of awareness applications. The use of
content-based routing and a subscription mechanism with quenching (which optimizes subscrip-
tions and discards published events that are not of subscriber‘s interest), together with federation
mechanisms, enabled its use in large-scale applications. Elvin provides a relatively simple but
optimized set of functionalities, with the ability to efficiently process a large amount of events
based on content-based routing, of tuple-based events. The subscription model does not support
simple event pattern detection as Siena, but allows filtering based on regular expressions in the
content of the events.

Table 20 Design dimensions for Elvin
 Elvin

Event Model Tuple-based

Subscription Model Content-based with support for content-based regular expressions filtering

Timing model Total order of events guaranteed in the centralized implementation only

Notification Model Push

Resource Model Servers support federation; all processing is performed in the server side

Protocol Model Interaction protocol: Pure publish/subscribe interaction with the end user

Infrastructure protocol: federation of servers

Versatility Model Simple core, and closed source code (commercial distribution) requiring implementation of new fea-
tures in the client application.

9.7 Gryphon
The Gryphon (Jin and Storm 2003) publish/subscribe system strives to combine the strengths

of database systems with the timely delivery of notifications from publish/subscribe infrastruc-
tures. It allows the use of SQL relational queries (continuous queries over event streams) per-
formed over a distributed event routing network, which allows, for example, the realization of
joins involving events from many different sources that can span a given period of time. A key
feature of this system is the ability to perform queries on histories of events, in what is called
“stateful” middleware. The use of SQL allows richer queries, which can combine data from dif-
ferent sources at different times, calculating totals, summarizing content, and group information
into new data. The relational ability provided by Gryphon is applicable to many application do-
mains, in special, it is important for context-aware applications, mobility and other applications
where history information is important.

UCI-ISR-05-8 - May 2005

 55

Table 21 Design dimensions for Gryphon
 Gryphon

Event Model Tuple-based

Subscription Model Content-based through a relational query model

Timing Model Total order of events with synchronized clocks

Notification Model Periodic pull (queries are checked at every time interval)

Resource Model Servers are federated and all processing is performed in the server side

Protocol Model Interaction protocols: Supports only the common publish/subscribe interaction, but with a relational
(SQL-based) subscription language

Infrastructure protocols: federation, clock synchronization, guaranteed delivery of events

Versatility Model SQL query capability provides query flexibility. Infrastructure provides an API to the client. Source
code is not available, requiring implementation of new features in the client application.

9.8 JEDI
The JEDI (Java Event-Based Distributed Infrastructure) (Cugola, Nitto et al. 2001) was de-

signed to cope with the special requirements of scalability and mobility. Scalability is achieved
by server federation. Event ordering is guaranteed by the system. One distinct characteristic of
Jedi is the support for mobile applications. As such, roaming and special primitives (move-in and
move-out) for client migration are provided. Event sequence detection with regular expression is
also supported. To cope with mobility, push and pull delivery policies are supported. JEDI uses
subject-based filtering where events are represented as method invocations: each event is labeled
with a subject, the method (or function name), and a list of attributes representing the parameters.

Table 22 Design dimensions for JEDI
 JEDI

Event Model Record-based. Events represent method invocations.

Subscription Model Subject-based

Timing model Use of logic clocks to achieve partial event ordering

Notification Model Push and pull to support mobility

Resource Model Servers are federated and all processing is performed in the server side

Protocol Model Interaction protocols: Provides mobile applications support, with the help of protocol primitives such
as move-in and move-out.

Infrastructure protocols: federation and roaming protocols

Versatility Model OO programming: Source code modification or implementation of advanced features by the client
applications only

9.9 CASSIUS
CASSIUS (Kantor and Redmiles 2001) is a notification server designed to support the devel-

opment of awareness-based applications. A distinctive feature of CASSIUS is its ability to model
information source hierarchies, allowing end-users to browse through and subscribe to those hier-
archies. The level of disruptiveness of the notifications can also be configured according to dif-

UCI-ISR-05-8 - May 2005

 56

ferent awareness styles. It allows the definition of content-based or type-based subscriptions.
Support for mobile applications is made possible through the use of the ubiquitous HTTP proto-
col and by allowing information consumers to store events in the server during periods of discon-
nection. Cassius uses a record-based event model, which its own set of fields.

Table 23 Design dimensions for CASSIUS
 CASSIUS

Event Model Record-based

Subscription Model Topic-based and Type-based

Timing Model Total order of events guaranteed by the central server

Notification Model Push, pull and periodic pull

Resource Model The server is centralized. The client-side provides support for pull delivery and sequence detection

Protocol Model Interaction protocols: Provides an API for managing event sources and hierarchies, and for reading
persistent notifications. Also supports user authentication protocol.

Infrastructure protocols: supports HTTP and a special pull protocol

Versatility Model OO programming: New features require direct source code modification or application-side imple-
mentation of the required functionality. Fixed record-based set makes it difficult to use the event
format in different application domains.

9.10 KHRONIKA
In the same way as CASSIUS, KHRONIKA (Lövstrand 1991) is a notification server designed

to support awareness in collaborative settings. It allows the filtering and delivery of information
coming from different event sources. Each user of the system can specify sets of pattern-action
subscriptions (in the form of Event-Condition-Action – or ECA rules). The notification mecha-
nism is configurable allowing different delivery mechanisms such as sounds, messages, starting
of applications and so on. Khronika also allows the direct browsing of the event repository.
Events have expiration times and remain on the server database as specified in their validity
(days, hours or brief intervals). They are represented as attribute/value pairs and can be grouped
in class hierarchies. The event language allows queries by time interval, event types and substring
matching. Access control lists and user groups are used. These restrictions are however, made
simple for usability purposes.

Table 24 Design dimensions for KHRONIKA
 KHRONIKA

Event Model Tuple-based

Subscription Model Content-based supporting ECA rules (active subscriptions).

Timing Model Guaranteed event ordering due to central server. Allows event expiration check

Notification Model Push and Pull with programmable notification styles

Resource Model Centralized server with distributed daemons: all event filtering is performed in the server side but
daemons execute notification actions

Protocol Model Interaction protocols: User authentication, Hierarchy browsing

Infrastructure protocols: unknown

Versatility Model Programmable notification language: Parts of the server can be programmed with Lisp, allowing new
notification styles to be provided.

UCI-ISR-05-8 - May 2005

 57

9.11 GEM
The GEM (Generalized Event Monitoring) system (Mansouri-Samani and Sloman 1997) im-

plements a generalized event language for real-time distributed systems monitoring. It provides
an advanced language where ECA (Event Condition Action) rules can be defined. Advanced se-
quence detection and specification rules can be specified, executing actions such as: the activation
or deactivated of other rules, the generation of higher-level events, summarization of events, de-
tection of critical conditions and so on. For being designed for real-time monitoring, rules can
include special time constraints such as specific delays between events and timers. It also allows
the use of event order constraints in event expressions, such as the specific order events should
occur and the acceptable delay between them. Events can be abstracted and generated based on
contents of other events. The event model is record based: events are represented as records with
variable attributes list, following the structure: (event-id, [<source-id>], [<timestamp>], [(<at-
tribute-value-list>)]).

Table 25 Design dimensions for GEM
 GEM

Event Model Record-based

Subscription Model Topic-based: evens, are generally queried by their id (a topic in this case) or timestamps, when used
in temporal expressions. The ability to mix temporal relations between events with complex sequence
detection expressions are the most important constructs of the language. It also supports rules and
actions.

Timing model Total order is of events is guaranteed by a centralized implementation

Notification Model Push, events are processed as they arrive and new events can be generated as notifications.

Resource Model Centralized on the monitor that interprets the language

Protocol Model Interaction protocols: GEM language

Infrastructure protocols: unknown

Versatility Model The interaction language, with ECA rules (active subscriptions), allows the programming of user-
defined event processing rules, but is limited by the language vocabulary. The service itself can only
be changed using OO programming techniques.

9.12 YEAST
The Yeast (Yet another Event-Action Specification Tool) (Krishnamurthy and Rosenblum

1995) is an event-action system used to automate tasks in a UNIX environment. Yeast allows ac-
tions to be performed when event patterns and environment changes are detected. It allows the
association of temporal constraints to events, borrowing its syntax from the at and cron programs
of UNIX systems. Sequential and out or order event pattern detection is supported. User-defined
actions are executed whenever an event pattern match occurs. These actions can originate new
events or start different applications. Yeast also allows the definition, activation and deactivation
of rules at runtime. This flexibility is provided by a shell script interface that integrates the Yeast
event processor with the UNIX environments. In short, YEAST works as an event-driven lan-
guage, with some similarities to the UNIX cron rule interpreter.

UCI-ISR-05-8 - May 2005

 58

Table 26 Design dimensions for YEAST
 YEAST

Event Model Record-based

Subscription Model Topic and type-based with rule-based expressions (ECA rules). Supports temporal and non-temporal
event subscriptions (or specifications). Allows the definition of complex event patterns.

Timing Model Event ordering is enforced by the infrastructure

Notification Model Pull: users can define rules to query for the status of the subscriptions (rules). Push: actions can be
associated to subscriptions, allowing the execution of applications or the generation of new events,
which allows different notification strategies.

Resource Model Centralized, all processing is performed by the local YEAST daemon.

Protocol Model Interaction protocols: User authentication, rule status query

Infrastructure protocols: unknown

Versatility Model Event-driven language that allows the elaboration of advanced subscriptions with the existing vo-
cabulary and the implementation of different notification mechanisms due to its integration with UNIX
shell script and ability to invoke external applications. Further extensions need source code change
(possibly C programming).

Other examples of systems that use rule-based subscriptions and specialized subscription lan-
guages are RUBCES and RUBDES (Sahingöz and Erdogan 2003) (Sahingöz and Erdogan 2003).

9.13 TSpaces from IBM
TSpaces (Wyckoff 1998) is a middleware for ubiquitous computing based on the tuple space

model and principles established by the Linda system (Gelernter 1985). It provides group com-
munication services, database services, URL-based file transfer services, and event notification
services. TSpaces allows heterogeneous, Java-enabled devices to exchange data with little pro-
gramming effort. In TSpaces, a tuple is a set of fields (attribute name, type, value) that represent
sets of Java objects. Tuples are published in tuple spaces in specific TSpace servers. Information
consumers subscribe to tuples using templates.

The basic primitive operations supported by the space are:

• write(tuple) Adds a tuple to the space, equivalent to a publish command.

• take(template_tuple) Performs an associative search for a tuple that matches the tem-
plate. When found, the tuple is removed from the space and returned. If none is found, re-
turns null.

• waitToTake(template_tuple) Performs an associative search for a tuple that matches the
template. Blocks until match is found. Removes and returns the matched tuple from the
space.

• read(template_tuple) Same as the "take" command above, except that the tuple is not
removed from the tuple space.

• waitToRead(template_tuple) Same as the "waitToTake" command above, except that
the tuple is not removed from the tuple space.

• scan(template_tuple) Same as the "read" command above, except returns the entire set
of tuples that match.

UCI-ISR-05-8 - May 2005

 59

• countN(template_tuple) Same as the "scan" command above, except that it returns a
count of matching tuples rather than the set of tuples itself.

Besides the primitives described above, the TSpaces API have evolved to support more ad-
vanced inter-process synchronization methods supporting regular expressions string matching,
transactions, SSL communication, XML and others9.

Table 27 Design dimensions for TSpaces
 TSpaces

Event Model Tuple-based

Subscription Model Type- (or topic-) based

Timing model Central tuple space serializes operations and guarantees ordering of events

Notification Model Pull, when take() command is executed

Resource Model Event matching is performed in the server-side

Protocol Model Interaction protocols: TSpace API as presented above

Infrastructure protocols: Consistency algorithms to cope with multiple federated servers

Versatility Model Minimal extensions can be programmed using the server API. For example, a distributed queue, by
the use of write and take over a tuple type. OO programming: Other changes require direct source
code change.

9.14 The Modular Event System
The Modular Event System (Fiege, Mühl et al. 2002) provides a configurable publish/subscribe

architecture based on the formal concept of scopes and event mappings. Informally speaking,
scopes are software components that implement a standard publish/subscribe interface. They
communicate by publishing and consuming events as any other publish/subscribe system. Scopes
can be recursively composed in publish/subscribe trees where a super-scope subscribes to events
from sub-scopes. Using this approach, a standard publish/subscribe system can be assembled. The
final behavior of the system is defined by the recursive composition of scopes, each one imple-
menting a different concern. For each scope, event mappings can be defined. Those mappings
apply sets of transformation to events allowing, for example, the implementation of content trans-
formations (for interoperability between two event services for example), or the filtering of events
based on security policies, or visibility rules, as another example. Hence, this approach provides a
modular architecture for the implementation of different publish/subscribe infrastructures based
on a common interface.

The current implementation, however, is based on the Siena event and subscription models, al-
lowing simple content transformations in the event mappings. In other words, it focuses on event
transformations for interoperability. Scopes allow the configuration of the functionality to include
or exclude from the service, coping with static configuration. The idea, however, can be further
extended to address other versatility issues.

9 Source: http://www.almaden.ibm.com/cs/TSpaces/

UCI-ISR-05-8 - May 2005

 60

Table 28 Design dimensions for the Modular Event System
 Modular Event System

Event Model Attribute/value pairs, but supports transformations

Subscription Model Content-based

Timing model Can support different timing models implemented in different scopes.

Notification Model Push

Resource Model Centralized

Protocol Model Interaction protocols: regular publish/subscribe API

Infrastructure protocols: not speficied

Versatility Model OO model and special components: Scopes can be used to implement different publish/subscribe
policies and algorithms and Event mappings can be used to implement filters and event transforma-
tions. Scopes can be composed, excluded and included providing static variability of the system
functionality.

9.15 Flexible Notification Framework (FNF)
Shen and Sun propose a flexible notification framework (or FNF for short) (Shen and Sun

2002) that allows the implementation and combination of different notification policies in the
support of collaborative applications. This is accomplished by the use of programmable message
queues, where different ingoing and ongoing notification mechanisms can be installed. It allows
the manipulation of incoming and outgoing event queues by controlling their event granularity
and event forwarding frequency. It also allows the definitions of transformations of notifications
(or events), for the implementation of application-specific concurrency control mechanisms.
Some of the notification policies supported are: instant propagation of messages (push), user col-
lection of events (pull), deferred publication (send event only upon receiving of commit com-
mand) and deferred notification (scheduled pull). Since the frequency of events varies with dif-
ferent applications, for example: chats, desktop sharing, file sharing and so on, operations involv-
ing those events can be performed between the event generation and its receipt by another appli-
cation. Hence operation transformations, specific to different application domain, can be pro-
grammed, installed on an event queue, and used to support the application interaction require-
ments for different application domains. For example, events can be abstracted or summarized in
higher-level operations to support application sharing sections; or redundant events can be elimi-
nated (or filtered out) in collaborative editing sections. Another advantage of this approach is the
reuse of strategies and policies by the composition of queues (or buffers).

UCI-ISR-05-8 - May 2005

 61

Table 29 Design dimensions for the Flexible Notification Framework
 Flexible Notification Framework (FNF)

Event Model Record-based. Events represent operations from collaborative applications

Subscription Model Channel and Topic-based (events are identified by their name). Message transformations can be
associated to the channel.

Timing model Event ordering is guaranteed by a centralized service and by the use of event queues

Notification Model Push, Pull, periodic Pull.

Resource Model Distributed: Queue filtering and event processing can be performed both in client or server sides

Protocol Model Interaction protocols: User-defined, using the programmable queues

Infrastructure protocols: queue composition protocols

Versatility Model OO programming and use of special components called programmable queues: programmable sup-
port different policies and filtering mechanisms, allowing the customization of the notification model.
They can be composed to implement more complex protocols.

9.16 FULCRUM
FULCRUM (Boyer and Griswold 2004) is a publish/subscribe system designed to support con-

text-aware applications. The service is constantly evaluating properties (or subscriptions) such as
user location, distances, and other runtime properties used by applications dependent on context
to react to changes in the environment (for example, the proximity of peers given by the triangu-
lar distance formula: (XR-XW)2 + (YR-YW)2 < D2, where X, Y and D are event attributes, and R and
W peers). It uses the open implementation design technique in order to allow the customization of
the system to the needs of different clients. Using this approach, FULCRUM allows the configu-
ration and definition of different implementation strategies that exploit the domain’s semantics to
be used in the subscription language. It also allows the execution of subscriptions in the publisher
brokers, called entry nodes, which copes with scalability by the reduction of event traffic between
nodes. Reuse of subscription strategies is also achieved. Different implementation strategies can
be combined in evaluating properties with similar semantics (for example, the notion of distance).

FULCRUM is built on top of Siena and Jabber (Jabber Software Foundation 2004) (a set of
streaming XML protocols and technologies that enable the exchange of messages, presence, and
other structured information between clients over the Internet). Hence, it borrows from Siena, its
event model, and from Jabber, its protocols. It adds to those systems the concept of active sub-
scriptions in the form of Java code that is executed when a subscription is matched, and enhanced
client-side brokers supporting different strategies.

FULCRUM subscription language and the use of active subscriptions allow event aggregation
(combination of data from multiple events). The also infrastructure provides optimizations such
as suppression of events from the source in case they do not match a peer subscription, which
reduces the number of messages in the system, and as a consequence the network traffic, an im-
portant requirement for context-aware systems where subscriptions combine events from multiple
distributed sources that are constantly generating events.

UCI-ISR-05-8 - May 2005

 62

Table 30 Design dimensions for FULCRUM
 FULCRUM

Event Model Tuple-based as Siena

Subscription Model Content-based with support for abstraction and context-aware operations.

Timing model Partial order of events

Notification Model Flexible and programmable: java programs are executed in response to subscription matching allow-
ing the implementation of different strategies besides push and pull

Resource Model Servers are federated and subscriptions are performed in the client side

Protocol Model Interaction protocols: context-aware subscription language that supports active subscriptions

Infrastructure protocols: Peer-to-peer federation of servers, dissemination of events based on
Jabber protocol, protocols for reducing event traffic between peers based on subscription knowledge.

Versatility Model Allows active subscriptions, support open implementation to add new subscription strategies. Allows
reuse or the implementation of new strategies.

9.17 ADEES
The ADEES (Adaptable and Extensible Event Service) (Vargas-Solar and Collet 2002) is a cli-

ent-side framework that allows the definition of different subscription and notification strategies.
It supports different sets of notification and subscription operations, expressed in a meta-model
(language). Operations are implemented by different components which can perform different
transformations over the events. Operations can be combined in different ways, forming more
complex expressions. The system is implemented as an event processing layer on top of CORBA-
NS and therefore, inherits its record-based event model, and subject-based subscription model.
The client framework, known as Event Manager, hosts the different components that implement
the operations, and is also responsible for interpreting the subscriptions, expressed according to a
meta-model. The Event Manager can be configured with a set of components that implement dif-
ferent subscription commands and filters such as: event sequence detection, event composition
and client-side persistency of events. It also supports different notification policies such as push
and pull or other user-defined policies. Each command can be a client to services provided by
other commands, allowing their composition. The novelty of the system is its ability to select the
set of client-side commands (or components) to have at a given moment, by providing a client-
side framework where new commands and notification policies can be installed and used, and to
allow their composition in more complex commands. This strategy provides a certain degree of
client-side extensibility, programmability and configurability of the subscription and notification
languages.

UCI-ISR-05-8 - May 2005

 63

Table 31 Design dimensions for ADEES
 ADEES

Event Model Record-based

Subscription Model Subject-based with support for defining new commands. Supports composition

Timing model Uses the CORBA-NS time model

Notification Model Flexible and programmable, currently supporting push and pull

Resource Model All advanced filtering is performed in the client side, but the basic event routing is performed in the
server-side (CORBA-NS)

Protocol Model Interaction protocols: supports only publication and subscription of events

Infrastructure protocols: unknown

Versatility Model Frameworks, models and components: Based on meta-models (subscription and notification lan-
guages descriptions) and client-side components which are used to extend those languages.

9.18 The programmable event-based kernel
A programmable event-based middleware that uses the concept of active subscriptions is pre-

sented here (Gazzotti, Mamei et al. 2003). The infrastructure was designed to support the interac-
tion between mobile agents that are co-located in the same host. As agents migrate from one host
to another, there is the need for obtaining local context information, from the host the agent mi-
grated to. The idea is to allow mobile agents co-located in the same host to be notified about
changes in the environment, and to communicate with one another using a publish/subscribe in-
frastructure. The proposed infrastructure relies on a simple publish/subscribe kernel, installed in
each host, that allows the specification of active subscriptions in java. A subscription is defined
by extending a generic subscription class and implementing an event filter and an action in that
subclass. The event model is also object-oriented, i.e. events are objects of a generic type (or
class), that define their own attributes and methods. Using this model, subscriptions are also ob-
ject-based, using events as templates. A template is an event object, with fixed attribute values or
wild cards, used by the kernel to match the events published in the infrastructure. The program-
mability is provided in the subscription model, that allows the execution of Java programs when-
ever events get matched, and the programming of customized filtering policies.

Table 32 Design dimensions for the programmable event-based kernel
 A programmable event-based kernel

Event Model Object-based

Subscription Model Object-based: objects used as templates for matching events represented as objects. Support for
active subscriptions and filter customization

Timing model Event ordering is guaranteed by the local event queue

Notification Model Programmable due to the active subscription approach: notifications are programmed in Java

Resource Model Centralized, all the processing is performed in the local host, in the scope of the local pub-
lish/subscribe infrastructure

Protocol Model Interaction protocols: supports only publication and subscription of events

Infrastructure protocols: unknown

Versatility Model Programmable and based on active subscriptions and filter customization that use the Java pro-
gramming language.

UCI-ISR-05-8 - May 2005

 64

9.19 FACET
FACET (Hunleth and Cytron 2002) is an extensible and configurable implementation of the

CORBA Event Service. The extensibility and configurability of features are implemented using
Aspect Oriented Programming (Elrad, Filman et al. 2001), which allows the weaving of different
features in the middleware. It was initially designed to provide specific configurations that can
run on restricted conditions of embedded systems, and can support the real-time requirements of
specific applications. Hence, performance and footprint are key design goals of this system (Even
though implemented in Java, C++ implementations are part of the future work). In FACET, ex-
tensions, in the form of advices, are provided along a skeletal implementation of the standard
CORBA event service (CORBA-ES). Configurations of those extensions, implemented as aspects
can be defined in order to support different applications requirements (footprint, QoS and filtering
capabilities). For being based on the CORBA-ES, the extensibility points go along the main com-
ponents of this standard, which basically specifies an event channel and standardized push or pull
supplier and consumer proxies.

Table 33 Design dimensions for FACET
 FACET

Event Model Record-based according to CORBA-ES standard

Subscription Model Topic and channel-based

Timing model Total order of events guaranteed by the centralized implementation (event channels)

Notification Model Push and pull, customizable

Resource Model Centralized

Protocol Model Interaction protocols: regular publish/subscribe through a programmatic API

Infrastructure protocols: real-time guarantees

Versatility Model Based on AOP, allowing the configuration, dependency check and static weaving of functional and
non-functional components to provide the desired implementation. Focus on real-time applications
and embedded systems.

9.20 YANCEES
YANCEES (Silva Filho, de Souza et al. 2003; Silva Filho, De Souza et al. 2004) is a versatile

notification service designed to be programmable, configurable and dynamic. It uses a combina-
tion of plug-ins, extensible languages, open implementation and composition filters techniques to
provide configurability, extensibility and programmability over the main design dimensions of a
publish/subscribe system, including support for protocols. YANCEES provides a bare-bones im-
plementation on top of which plug-ins can be added. Plug-ins implement extensions in the sub-
scription, notification and protocol languages. Besides plug-ins, filters can be used to intercept the
publication and notification queues of events, performing event transformations, type checking,
persistency or other actions. Static services can also be installed in order to support the implemen-
tation of plug-ins and filters. Finally, the system uses open implementation to allow the replace-
ment of the event dispatcher with different event routing strategies. Those components are man-
aged and combined together with the help of a configuration language. Reuse is achieved by the
dynamic composition of plug-ins by the use of dynamic process trellis architectural style (Factor
1990). Static variability is achieved by a configuration language that allows the installation of
plug-ins, filters and services; whereas dynamic variability is possible by the ability to dynami-
cally install plug-ins.

UCI-ISR-05-8 - May 2005

 65

YANCEES was initially designed as a way to allow the customization, extension and imple-
mentation of new functionality on top of existing publish/subscribe infrastructures, especially
content-based notification servers such as Siena and Elvin, with special focus on collaborative
software engineering applications. In fact, the system can be used as an event processing layer on
top of those systems. The main focus of the project is its configurability, the expressiveness of the
models, the interoperability, integration of applications and the support for many application-
specific services. Even though performance and footprint are important, they are not the main
concern of this project (since it uses XML and Java).

Table 34 Design dimensions for YANCEES
 YANCEES

Event Model Extensible, supports record, tuple and others.

Subscription Model Extensible and programmable according to the installed plug-ins

Timing model Total order of events in centralized implementation and partial order with specialized time synchroni-
zation plug-ins (can be extended to support more advanced features).

Notification Model Extensible and programmable, supports: push, pull and others

Resource Model Allows the evaluation of subscriptions in the client and server sides. Also supports filters in both
sides.

Protocol Model Interaction protocols: programmable and configurable, current extensions support CASSIUS proto-
cols.

Infrastructure protocols: programmable and configurable, current extensions support P2P connec-
tion

Versatility Model Applies a combination of software versatility strategies: plug-ins and extensible languages, open
implementation and composition filters strategies.

9.21 Other publish/subscribe infrastructures
Besides the systems mentioned here, many other research prototypes and commercial products

exist, most of them providing specific functionality for different classes of problems such as
Internet-scale notification systems, peer-to-peer networks, mobility, awareness, software monitor-
ing, distributed processes communication and so on. The survey of all those systems is beyond
the scope of this document, which main focus is to show the limitations of current pub-
lish/subscribe infrastructures with respect to their versatility, and to propose some research ven-
ues in the area by enlisting promising and existing approaches to the problem.

Information about publish/subscribe infrastructures can be found in the following surveys
(Baldoni, Contenti et al. 2003; Eugster, Lausanne et al. 2003). A survey of event-based systems
for software monitoring is also presented here (Dias 2002).

10 Analysis of publish/subscribe infrastructures according to their ver-
satility

Based on the systems previously surveyed, we built a table presenting a more in depth classifi-
cation of the systems with respect to the proposed versatility dimensions. For each one of the sys-
tem, Table 35 presents the main strategy used to the problem.

It is important to mention that usability is a comprehensive set of properties as mentioned in
7.11, which in the case of software development, is highly influenced by the versatility approach

UCI-ISR-05-8 - May 2005

 66

used in its development. Hence, when populating the usability column as follows, we mention the
interaction mechanisms of the users with the system, which includes the mechanisms the versatil-
ity approaches provide to achieve the other versatility dimensions.

Table 35 List of publish/subscribe infrastructures and their versatility approaches
System /
Versatility

Extensibility Programmabil-
ity

Reuse Static
variability

Dynamic
 variability

Usability

CORBA-NS OO model OO model and
channel QoS
API

As a pub/sub
API

n/a n/a pub/sub API
and subscrip-
tion language

JMS OO model OO model and
channel QoS
API

As a pub/sub
API

n/a n/a Pub/sub API
and filters

READY OO model OO model and
channel QoS
API

As a pub/sub
API

n/a Allows move of
subscription
from client to
server

Complex
pub/sub API
and subscrip-
tion language

Siena OO model OO model As a pub/sub
API

n/a n/a Pub/sub API
and filters

Herald OO model OO model As a pub/sub
API

n/a n/a Pub/sub API

Elvin OO model OO model As a pub/sub
API

n/a n/a Pub/sub API
and subscrip-
tion language

Gryphon OO model OO model As a pub/sub
API with SQL-
like language

n/a n/a SQL-lique query
language

JEDI OO model OO model As an extended
pub/sub API

n/a n/a Pub/sub API
and filters

CASSIUS OO model OO model As an extended
pub/sub API

n/a n/a API and query
language

KHRONIKA LISP LISP LISP n/a n/a API and pro-
gramming lan-
guage

GEM OO model
infrastructure
and

Rule-based
language

OO model
infrastructure
and

Rule-based
language

As an event
processing
language

n/a n/a Rule-based
language

YEAST C language and

Rule-based
language

C language and

Rule-based
language

As an event
action language
integrated to
UNIX shell

n/a n/a Shell script
programming

TSpaces C language and

Programming
API

C language and

Programming
API

As a tuple
space API

n/a n/a Programming
API

The Modu-
lar Event
System

OO model with
scopes and
event mappings
components

OO model with
scopes and
event mappings
components

Of scopes and
event mappings

Based on
scopes and
mappings com-
position

n/a Component-
based abstrac-
tion

UCI-ISR-05-8 - May 2005

 67

FNF OO model and
programmable
queue compo-
nents

OO model and
programmable
queue compo-
nents

Of queues and
filtering policies

Based on
queue composi-
tion

n/a API and OO
programming

Fulcrum Open imple-
mentation

Open imple-
mentation

Of subscription
strategies

Based on Open
implementation

n/a Open imple-
mentation and
subscription API

ADEES Frameworks,
meta-models
and compo-
nents

Frameworks,
meta-models
and compo-
nents

Of event proc-
essing compo-
nents

Configuration of
client-side com-
ponents set

n/a Frameworks,
meta-models
and component
model

FACET AOP AOP Of aspects configuration of
aspects

n/a AOP program-
ming

YANCEES Plug-ins and
extensible lan-
guages, filters
and open im-
plementation

Plug-ins and
extensible lan-
guages, filters
and open im-
plementation

Of plug-ins,
filters, and third-
party compo-
nents

Configuration of
plug-ins, lan-
guages, filters
and other com-
ponents

Plug-in oriented Plug-ins and
extensible lan-
guages, filters
and open im-
plementation

Based on our concept of versatility, it is clear that many of the systems previously surveyed
marginally address the versatility requirements we propose. Instead of being designed for evolu-
tion and configuration of their features set, those systems strive to support different application
domains and requirements by applying simpler but limited strategies. The main strategies em-
ployed are: (1) to build the exactly set of required functionality for the application domain the
system will serve; or (2) to provide a minimal set of features and let the extension to the applica-
tion level (minimal core); or (3) to support the larger set of features as possible (also known as
one-size-fits-all or monolithic approaches); or (4) to provide a more flexible (i.e. programmable)
subscription/notification languages in the context of the variability of the application domain; and
finally, more recently, (5) to allow the general adaptation, configuration and programming of the
major dimensions of the system. This last category of systems strives to provide versatility and
support for different application domains.

10.1 Specialized notification servers
A largely used strategy, and the less versatile of all, is the development of specialized solu-

tions, in order words, to “build the right tool for each job”. Using this strategy, notification serv-
ers have been developed from scratch, supporting different domains, ranging from workflow
management systems and mobility, as the example of the JEDI; context-aware applications, as
Gryphon; awareness applications, as the case of CASSIUS; and so on. In all those cases, the basic
publish/subscribe mechanism is implemented together with a specialized set of features tailored
to the needs of the application they intent to serve.

As “right tools for each job”, they tend to perform better than more generalized approaches.
For not being designed to support different application domains, their implementation can be
simplified and focused on the problem they are solving. It is common, for example, the use of
record-based event models and context-specific subscription languages. A side effect of this spe-
cialization, however, is the lost of generality and the natural incompatibility with other pub-
lish/subscribe networks. Finally, since versatility techniques are generally not used, their evolu-
tion and adaptation to new domains is difficult.

UCI-ISR-05-8 - May 2005

 68

10.2 Minimal core infrastructures
A more recent category of notification servers which includes Siena, Elvin, and Herald, pro-

vide a relatively simple but optimized set of functionalities, with the ability to efficiently process
a large amount of events and scale to Internet-wide proportions. For such, they adopt the content-
based subscriptions and a flexible event model based on events defined as variable length attrib-
ute/value pairs. Scalability is achieved by the federation of servers. In fact, the simplified, but
generalized, subscription language is a result of the striving for scalability, which limits the ex-
pressiveness of the subscription language in favor of routing performance (Carzaniga, Rosenblum
et al. 1999). TSpaces also falls in this category, for providing a minimal API for tuple space ma-
nipulation, permitting the implementation of more advanced primitives.

In spite of a current trend for Internet-scale routing requirements, all those systems provide a
basic set of primitives (typically only the publication and subscription of events), that can be used
to implement more advanced features in the client applications. In fact, systems as YANCEES
and FULCRUM use Siena as a component of their systems, which simple API is used as a basic
publish/subscribe mechanism on top of which new functionality is implemented. Additionally,
the use of content-based routing and tuple-based events provides compatibility with other sub-
scription models such as channel-based and topic-based. In spite of this generality, this approach
also presents a low degree of versatility in their infrastructure. The implementation of more ad-
vanced features such as security, mobility and advanced event processing, for example, require
deeper design changes and/or new commands in their subscription and notification languages,
which is not natively supported by those systems.

10.3 One-size-fits-all implementations
One-size-fits-all notification servers such as the CORBA Notification Service, the JMS stan-

dard from Sun or even READY, adopt a different approach. They strive to satisfy the large num-
ber of application requirements as possible, by implementing a broad spectrum of event, subscrip-
tion, notification and resource options and policies.

This strategy allows the development of systems able to support a large set of application do-
mains. For using the same infrastructure, systems can more easily interoperate. A common prob-
lem of those approaches, however, is their bulkiness. The large set of features those servers pro-
vide usually implies in excessive consumption of resources, both in the client and server sides. As
stressed by Wirth(Wirth 1995), this approach leads to software that expands to fit all available
system resources.

10.4 Domain-specific versatile notification servers
The need for variability demanded by some application domains, resulted in more flexible in-

frastructures. Systems as FULCRUM, the Shen and Sun FNF, ADEES and KHRONIKA are
some examples. They are designed to support the variability within specific application domains,
in this case, context-aware applications (FULCRUM), concurrency control in collaborative set-
tings (FNF), inter-agent communication (ADEES), interoperability and heterogeneity (The
Modular Notification Service) and Awareness (KHRONIKA). For such, those systems apply
more advanced strategies such as open implementation, in the case of FULCRUM; programmable
queues in the case of FNF, software frameworks (ADEES), components (The Modular Notifica-
tion Service) and programmable notification styles as KHRONIKA.

Also included in this category are rule-based systems as YEAST and GEM. They provide do-
main-specific languages that support the concept of rules (or active subscriptions). Such approach
provides some programmability in the way events are processed and notifications are generated,

UCI-ISR-05-8 - May 2005

 69

which allow their integration with system tools, as the case of YEAST, or the detection of critical
conditions in software applications, as GEM. Those systems, however, are created for specific
proposes such as UNIX application integration (YEAST scripting and action language) and dis-
tributed systems monitoring (GEM), and their lack of use of more advanced versatility techniques
hinders their portability to different application domains.

Hence, a common strategy that permeates most of those approaches is the combination of the
concept of active subscriptions (subscriptions that specify a set of actions as a result of an event
matching). The action part of the subscription is implemented with different approaches such as
frameworks or open implementations.

While being able to support the variability inside their application domains, those systems are
not designed to support other application domains, having their variability defined in the exact
points where the application they support requires this variability. Another consequence is the
lack of interoperability in most of those solutions.

10.5 Generally versatile notification servers
Finally, a new category of publish/subscribe infrastructures that strives to support various lev-

els of versatility properties mentioned in 6.1 have lately received increased research attention.
Those systems apply current software engineering techniques such as Aspect Oriented Program-
ming (FACET) and extensible languages, plug-ins and composition filters (YANCEES), improv-
ing their ability to expand and contract their set of features in order to support variety of applica-
tion domains.

We can also classify ADEES in this category since it provides a versatile subscription and noti-
fication model, that is not bound to any specific application domain. Even though it does not pro-
vide a flexible event or protocol models (as the case of FACET also), it represents an effort to-
wards of a fully versatile publish/subscribe system.

Systems as YANCEES and FACET allow the customization of many aspects of the infrastruc-
ture including the set of features supported (its footprint) and the notification strategies provided.
YANCEES goes beyond FACET in providing a flexible event model, an extensible subscription
language that uses plug-ins and a protocol model that allows the implementation of other sorts of
interaction with the service.

A constant challenge of those new approaches is their usability. The use of new techniques, not
well known in the practitioners’ community usually requires a steep learning curve, and the un-
derstanding of the models behind those systems is not usually a trivial task, both factors can com-
pensate the gain in cost associated to the extensibility, reuse and adaptability of those systems.

A summary of the herein described approaches is presented in Table 36 as follows.

UCI-ISR-05-8 - May 2005

 70

Table 36 Summary of most popular versatility approaches for publish/subscribe infrastructures
Versatility
Strategy

Example sys-
tems

Description Strengths Limitations

Application
specific

CASSIUS, JEDI,
Gryphon

Provide a fixed set of re-
quirements demanded by a
specific application domain

Right tool for the do-
main, requiring low or
no adaptation

Limited interoperability and
portability to different appli-
cation domains

Minimal core Siena, Herald,
Elvin, TSpaces

Provides a minimal an opti-
mized API to cope with fast
event routing or tuple-spaces
manipulation

Useful for applications
that demand fast and
simple pub-
lish/subscribe services
or tuple manipulation

Limited subscription capabil-
ity, with a minimum set of
features requiring exten-
sions to be made in the
client side

One-size-fits-all CORBA-NS,
READY, JMS

Support a large set of fea-
tures to address the require-
ments of the majority of ap-
plications

Can support a larger set
of applications, coping
with interoperability and
application evolution

Bulkiness (memory foot-
print), may not support
some application-specific
requirements, complex API

Domain-specific
versatile

FULCRUM,
KHRONIKA, FNF,
Modular Event
System, ADEES,
GEM, YEAST

Provide a flexibility around
the variability points of the
application domain (the vari-
ability is implemented
through different approaches)

Right tool for domains
that require a certain
degree of variability

Limited interoperability and
portability to different appli-
cation domains Support only
domain-specific applications

Generally Ver-
satile

FACET,
YANCEES, ADE-
ES,

Provide generalized support
for the extension, addition
and selection of new features

Address many of the
versatility properties we
propose

Steep learning curve to
understand extension
mechanisms, not so clear
system models.

11 Promising research topics
One next step would be the realization of a comparative study between versatility approaches,

comparing their effectiveness in addressing the versatility properties in the publish/subscribe do-
main. The first step towards the identification of methodologies and approaches to apply those
techniques is their understanding. The next step would be to research and identify successful
cases where those approaches are used in the solution of the versatility problem, and identify pat-
terns, and guidelines that lead to their proper use.

Another venue is to study and compare the combined use of such techniques in the solution of
the publish/subscribe problem. How could the benefits of one or another approach be combined
in an application without inheriting its weaknesses and without overcomplicating the implementa-
tion? For example, one can try to combine extensible languages for representing subscriptions
and events, aspect-oriented programming for implementing cross-cutting concerns, plug-ins for
extensibility, programmability and dynamism, software patterns for source code clarity and ex-
tensibility, active subscriptions for advanced notifications, and composition filters for implement-
ing additional protocols, all under a common component model, using the services provided by an
application container. The challenge then would be to combine those strategies, using their
strengths without inheriting their weaknesses and without overcomplicating the design. Our ex-
perience in the design of YANCEES showed that the combination of those approaches, even
though may achieve hither degrees of extensibility, programmability and configurability, may
result in an implementation that is not usable, mainly because of the steep learning curve associ-
ated to the versatility approaches and to the understanding and use of the system.

UCI-ISR-05-8 - May 2005

 71

Hence, in direct opposition to the previous idea, one could conceive a simple but generic model
that would be the basis for the construction of more complex systems; a model that uses composi-
tion of simple standardized components (or kernels), for example that could be easy for practitio-
ners to understand and apply. Simplicity is the key to the success of many approaches that, even
though may not address all the proposed versatility requirements, do a good job in capturing the
essence of the problem. Usability is an important aspect in the selection of the extensibility tech-
nique but, ironically, is many times ignored by practitioners or even researches that build those
approaches. In other words, solving the problem through a simple and comprehensible way must
be the goal of a solution.

12 Conclusions
In the context of software engineering, versatility can be defined as the ability of a computa-

tional system to serve multiple purposes or to accommodate the requirements of different use
situations which, in terms of software qualities can be defined in its ability to support extension,
programmability and reuse; besides of being able to be dynamically and statically configured to
different purposes in usable ways. The survey of existing publish/subscribe infrastructures shows
that most of existing research and industrial publish/subscribe infrastructures are not versatile
enough to address the requirements of new application domains, or to be adapted to different ap-
plication requirements.

More recently, domain-specific versatile and generally versatile approaches have been devel-
oped moved by the need for variability in the application domains. In the case of the domain-
specific versatile solutions, systems as ADEES, FULCRUM and FNF provide ingenious ways to
address their domain variability requirements, which is usually addressed by modern approaches
such as components, open implementations and extensible languages. In generally versatile ap-
proaches such as YANCEES, a set of techniques are used to address many of the proposed versa-
tility qualities. Those approaches, however, are still insufficient for the proposed set of qualities,
failing short mainly in the usability requirement.

The use of multiple versatility approaches is an interesting idea. It strives to combine the
strengths of multiple approaches in the addressing of versatility. In fact, systems as YANCEES,
that employs different techniques in addressing the versatility requirements (open implementa-
tion, plug-ins, extensible languages and frameworks), achieves a much higher degree of versatil-
ity than those systems based on a single solution, such as FACET which mainly relies on AOP.
The drawback, however, is the reduction of usability, since users need learn and use not only one
but many different approaches in a meaningful way.

Another pitfall in the use of multiple approaches is the possibility of their misuse. If not used to
the specific point they excel, they can jeopardize, instead of improve, the overall system design,
impacting in other dimensions. For example, approaches such as computational reflection may
slow down the whole system if generally used. In another example, software frameworks may
actually diminish extensibility if the right adaptation points are not identified through a thorough
domain analysis.

Another interesting observation is that the principles of reuse, extensibility, programmability
and usability are not always compatible with one another. In fact, before applying one or another
technique, both practitioners and researches need to account for the trade-offs from each ap-
proach. In other words, due to the complexity of those requirements and the availability of too
many approaches to address the problems that they raise, it is very challenging to come up with
an implementation that fits all provided properties in all situations. Hence, based on the strategies
surveyed, we come to the conclusion that the choice of the right versatility approach for the right
versatile implementation must be driven by the application domain and the foreseeable uses of the

UCI-ISR-05-8 - May 2005

 72

application. In fact, we observed the following trade-offs, if combining the strengths and limita-
tions of each versatility approach:

Decomposition and abstraction. According to Guttag (Guttag 2001), since good programs are
those who persist over time and are able to evolve to address new improvements and require-
ments, no matter how good a program was originally, or how good it performs; ultimately, per-
formance is determined by how easy it is to repeatedly modify and optimize the software. In other
words, according to Guttag, “programming is about managing complexity in a way that facili-
tates change, and there are two powerful mechanisms for accomplishing this: decomposition and
abstraction. Decomposition creates structure in a program, and abstraction suppresses detail.
The key is to suppress the appropriate details”. Hence, on the construction of software, and in
special publish/subscribe infrastructures, one should definitely apply techniques that allow the
partition of the problem (decomposition), hiding unnecessary details (abstraction).

Freedom versus restriction. Abstraction is a key idea in handling with complexity. It is
largely used by frameworks and component-based approaches to hide unnecessary implementa-
tion details from the user. This characteristic is also important in protecting the system from its
users from modifying critical parts of the software. This approach, however, can make the system
harder to change since the access to the implementation details is limited. Approaches such as
open implementation, AOP and meta-level programming go in the opposite direction, permitting
a better customization of the system, bypassing some of those classical restrictions. The power
provided by those approaches and languages, however, may lead to solutions that instead of im-
proving modularity, reuse and clarity of software. For example, one can try to completely define a
system in terms of aspects, modeling every functional requirement as meta-level programs, in-
stead of implementing only the non-functional requirements as aspects. This approach may result
in very inefficient and not so clear source code. As a consequence, good design practices and pos-
sible restrictions need to be observed when combining those approaches in order to achieve a bal-
ance between encapsulation, abstraction and openness, designing a system that is easy to change
and evolve at the same time that prevents end users from misusing the techniques it applies.

Usability versus usefulness. Another critical point in the process of design for evolution is us-
ability. The system and the versatility mechanisms used must be relatively easy to understand and
use. The versatility approach adopted must be such that the customization and evolution costs of
customizing and extending the infrastructure is inferior or equal to the cost of designing and
building a new system from scratch. In other words, the reason there are too many solutions to the
same publish/subscribe problem is that, at least initially, the cost of producing a new pub-
lish/subscribes system is seductively low, and the reuse or customization of existing solutions is
not usually as easy as desired. In other words, the use of a new versatility approach and its appli-
cation to extend or customize a generalized solution may require a steep learning curve or may
have high customization and extension costs. Hence, an approach must not only be useful but also
usable.

Efficiency versus effectiveness. A common consequence of the application of some versatility
techniques is performance degradation. It is a price to be paid on account of abstraction, modu-
larization and, sometimes usability of a versatility approach. However, if used in a right way, the
gain in versatility may compensate or even surpasses the long term cost of using not so versatile
approaches. In fact, a proper use of a versatility technique, respecting its limitations, has shown
comparable or even in some cases, slightly better in terms of performance, than those solutions
using more traditional software engineering approaches. An example is given by (Zhang and
Jacobsen 2004) where a CORBA middleware refactored with aspects, performed better and re-
sulted in software with less lines of code than the original pure OO implementation.

UCI-ISR-05-8 - May 2005

 73

Configurable versus inflexible implementations. The need for configuration management is
another issue that comes as a consequence of modularization. As modularization addresses com-
plexity and improves reuse and extensibility, inter-dependencies between these modules must be
observed. Automatic incompatibility checks must be performed, protecting the developers from
wrong module versions and configuration mismatches. Besides dependencies, variability be-
comes an issue. As parts of the system can be configured and exchanged, the need for automatic
mechanisms to manage the software evolution becomes evident. This is an important aspect to be
considered in the use of approaches such as plug-ins, components or even AOP (as exemplified
by FACET).

Testing and debugging. Error handling and application debugging is another issue to be man-
aged in versatile solutions. On designing for extensibility and programmability one usually intro-
duces many variability points in the systems that will be usually implemented by inexpedient de-
velopers that do not want to know about the hidden parts of the system. A challenge in those ap-
proaches is then is to keep the system tolerant to bugs and customization errors coming from
user’s extensions. In the case of the versatility techniques surveyed, approaches such as CBSE,
frameworks, plug-ins and open implementation are more sensitive to these kinds of interference,
which may either refrain the adoption of such approaches in more generalized solutions, or im-
pose a large amount of work in devising mechanisms that allow improved application debugging
and fault isolation.

As a concluding remark, a general observation is that, as new techniques are devised and the
fundamental software characteristics such as complexity and changeability are tamed, the need
for versatility will be always a concern. This comes from the fact that, as new techniques and ap-
proaches are created and their impact to software engineering changeability produces more mal-
leable software, the demand on software tends to grow, and with it, its complexity and need for
generality. Today’s software, with systems build of millions of lines of code, as modern operating
systems, is a proof of that modern versatility techniques such as object oriented programming,
software patterns, frameworks and component-based software engineering can gradually over-
come the complexity of software. The problem however, is the vicious cycle that gets formed by
the continuous growth of software complexity, motivated by those advances. This fact forces cur-
rent approaches to their limit, demanding new techniques. In this context, the search for the “sil-
ver bullet” will always be part of the software engineering research.

Acknowledgements
This research was supported by the U.S. National Science Foundation under grant numbers

0205724 and 0326105, and by the Intel Corporation

References
Aksit, M. and B. Tekinerdogan (1998). Solving the Modeling Problems of Object-Oriented Languages by

Composing Multiple Aspects Using Composition Filters. 12th European Conference on Object-
Oriented Programming - AOP'98 Workshop, Brussels, Belgium.

Bachrach, J. and K. Playford (2001). The Java syntactic extender (JSE). 16th ACM SIGPLAN conference
on Object oriented programming, systems, languages, and applications (OOPSLA'01), Tampa
Bay, FL, USA.

Baldoni, R., M. Contenti, et al. (2003). The Evolution of Publish/Subscribe Communication Systems. Fu-
ture Directions of Distributed Computing. Springer-Verlag. 2584.

Banavar, G., T. Chandra, et al. (1999). An efficient multicast protocol for content-based publish-subscribe
systems. 19th IEEE International Conference on Distributed Computing Systems.

Banavar, G., T. Chandra, et al. (1999). "A Case for Message Oriented Middleware." Lecture Notes in
Computer Science 1693.

UCI-ISR-05-8 - May 2005

 74

Batory, D., B. Lofaso, et al. (1998). JTS: tools for implementing domain-specific languages. Fifth Interna-
tional Conference on Software Reuse, Victoria, BC, Canada.

Batory, D. and S. O'Malley (1992). "The Design and Implmementation of Hierarchical Software Systems
with Reusable Components." ACM TOSEM 1(4): 355-398.

Beck, K. and R. Johnson (1994). Patterns Generate Architectures. Lecture Notes in Computer Science.
Springer-Verlag. 821: 139-149.

Bergmans, L. and M. Aksit (2001). "Composing Crosscutting Concerns Using Composition Filters." Com-
munications of the ACM 44(10): 51-58.

Bernstein, P. A. (1996). Middleware: a model for distributed system services. Communications of the
ACM. 39: 86-98.

Birsan, D. (2005). On Plug-ins and Extensible Architectures. ACM Queue. 3: 40-46.
Boyer, R. T. and W. G. Griswold (2004). Fulcrum – An Open-Implementation Approach to Context-Aware

Publish/Subscribe. San Diego, UCSD.
Brooks, F. P. (1987). No Silver Bullet: Essence and Accident in Software Engineering. IEEE Computer 20.

10: 10-19.
Cabrera, L. F., M. B. Jones, et al. (2001). Herald: Achieving a Global Event Notification Service. Eighth

Workshop on Hot Topics in Operating Systems (HotOS-VIII), Elmau, Germany, IEEE Computer
Society.

Cardone, R. (1999). On the Relationship of Aspect-Oriented Programming and GenVoca. 9th Workshop on
Institutionalizing Software Reuse, University of Texas, Austin, TX.

Cardone, R., A. Brown, et al. (2002). Using Mixins to Build Flexible Widgets. 1st International Conference
on Aspect-Oriented Software Development, Enschede, The Netherlands.

Cardone, R. and C. Lin (2001). Comparing Frameworks and Layered Refinement. 23td International Con-
ference on Software Engineering, Toronto, CA.

Carzaniga, A., D. S. Rosenblum, et al. (1999). Challenges for Distributed Event Services: Scalability vs.
Expressiveness. ICSE '99 Workshop on Engineering Distributed Objects (EDO '99), Los Angeles,
CA, USA.

Carzaniga, A., D. S. Rosenblum, et al. (2001). "Design and Evaluation of a Wide-Area Event Notification
Service." ACM Transactions on Computer Systems 19(3): 332-383.

Carzaniga, A. and A. L. Wolf (2001). Content-Based Networking: A New Communication Infrastructure.
NSF Workshop on an Infrastructure for Mobile and Wireless Systems.

Chatley, R., S. Eisenbach, et al. (2003). Painless Plugins. Technical Report -
http://www.doc.ic.ac.uk/~rbc/writings/pp.pdf. London, Imperial College London.

Clarke, M. and G. Coulson (1998). An architecture for dynamically extensible operating systems. Interna-
tional Conference on Configurable Distributed Systems (ICCDS'98), Annapolis, MA, USA.

Clarke, S. (2004). Measuring API Usability. Dr. Dobb's Journal Windows/.NET Supplement: S6-S9.
Codenie, W., K. D. Hondt, et al. (1997). "From custom applications to domain-specific frameworks."

Communications of the ACM 40(10): 70-77.
Constantinides, C. A., A. Bader, et al. (2000). "Designing an aspect-oriented framework in an object-

oriented environment." ACM Computing Surveys (CSUR) 32(1es).
Costa, F. M., G. S. Blair, et al. (2000). "Experiments with an architecture for reflective middleware." Inte-

grated Computer-Aided Engineering Journal 7(4): 313-325.
Cugola, G., E. D. Nitto, et al. (2001). "The Jedi Event-Based Infrastructure and Its Application on the De-

velopment of the OPSS WFMS." IEEE Transactions on Software Engineering 27(9): 827-849.
Czarnecki, K. and U. W. Eisenecker (1999). Components and generative programming (invited paper). 7th

European software engineering conference held jointly with the 7th ACM SIGSOFT international
symposium on Foundations of software engineering, Toulouse, France, Springer-Verlag.

Dashofy, E., A. v. d. Hoek, et al. (2005). "A Comprehensive Approach for the Development of Modular
Software Architecture Description Languages." ACM Transactions on Software Engineering and
Methodology to appear.

DePaula, R., X. Ding, et al. (2005). "In the Eye of the Beholder: A Visualization-based Approach to Infor-
mation System Security." To appear in The International Journal of Human-Computer Studies (
IJHCS) Special Issue on HCI Research in Privacy and Security.

Dias, M. (2002). Software Monitoring - A Survey. Irvine, UC Irvine.
Dias, M. and D. Richardson (2003). The Role of Event Description on Architecting Dependable Systems.

Lecture Notes in Computer Science - Book on Architecting Dependable Systems. Spring-Verlag.

UCI-ISR-05-8 - May 2005

 75

Dingel, J., D. Garlan, et al. (1998). Reasoning about implicit invocation. 6th International Symposium on
the Foundations of Software Engineering (FSE-6), Lake Buena Vista, FL, USA.

Dourish, P. and S. Bly (1992). Portholes: Supporting Distributed Awareness in a Collaborative Work
Group. ACM Conference on Human Factors in Computing Systems (CHI '92), Monterey, Califor-
nia, USA, ACM Press.

Edwards, G., G. Deng, et al. Model-driven Configuration and Deployment of Component Middleware Pub-
lish/Subscribe Services.

Elrad, T., R. E. Filman, et al. (2001). "Aspect-oriented programming: Introduction." Communications of
the ACM 44(10): 29-32.

Emmerich, W. (2000). Software Engineering and Middleware: A Roadmap. The Future of Software Engi-
neering. A. Finkelstein, ACM Press.

Eugster, P. T., S. Lausanne, et al. (2003). "The Many Faces of Publish/Subscribe." ACM Computing Sur-
veys (CSUR) 35(2): 114-131.

Factor, M. (1990). The process trellis architecture for real-time monitors. 2nd ACM SIGPLAN symposium
on Principles & practice of parallel programming, Seattle, Washington, United States.

Fiege, L., G. Mühl, et al. (2002). "Modular event-based systems." The Knowledge Engineering Review
17(4): 359 - 388.

Filman, R. E., S. Barrett, et al. (2001). Inserting ilities by controlling communications. Communications of
the ACM. 45: 116-122.

Fitzpatrick, G., T. Mansfield, et al. (1999). Instrumenting and Augmenting the Workaday World with a
Generic Notification Service called Elvin. European Conference on Computer Supported Coopera-
tive Work (ECSCW '99), Copenhagen, Denmark, Kluwer.

Freeman, E., S. Hupfer, et al. (1999). JavaSpaces Principles, Patterns, and Practice, Book News, Inc.
Gamma, E. (2001). Design Patterns - Ten Years Later. Software Pioneers (Contributions to Software Engi-

neering), Springer.
Gamma, E., R. Helm, et al. (1995). Design Patterns: Elements of Reusable Object-Oriented Software, Ad-

dison-Wesley Publishing Company.
Garlan, D., R. Allen, et al. (1995). "Architectural Mismatch: Why Reuse Is So Hard." IEEE Software 12(6):

17-26.
Gazzotti, M., M. Mamei, et al. (2003). A Programmable Event-based Middleware for Mobile Organiza-

tions. 11th EUROMICRO Conference on Parallel, Distributed, and Network Processing, Genova,
Italy., IEEE CS Press.

Gelernter, D. (1985). "Generative communication in Linda." ACM Transactions on Programming Lan-
guages and Systems (TOPLAS 7(1).

Group, O. M. (2002). CORBA Components. OMG Document formal/2002-06-65, OMG.
Gruber, R. E., B. Krishnamurthy, et al. (1999). The Architecture of the READY Event Notification Service.

ICDCS Workshop on Electronic Commerce and Web-Based Applications, Austin, TX, USA.
Gutierrez-Nolasco, S. and N. Venkatasubramanian (2001). Design Patterns for Safe Reflective Middleware.

Workshop Towards Patterns and Pattern Languages for Object-Oriented Distributed Real-Time
and Embedded Systems (OOPSLA 2001).

Guttag, J. V. (2001). Abstract Data Types, Then and Now. Software Pioneers (Contributions to Software
Engineering), Springer.

Hilbert, D. and D. Redmiles (1998). An Approach to Large-scale Collection of Application Usage Data
over the Internet. 20th International Conference on Software Engineering (ICSE '98), Kyoto, Ja-
pan, IEEE Computer Society Press.

Hunleth, F. and R. K. Cytron (2002). Footprint and feature management using aspect-oriented program-
ming techniques. Joint Conference on Languages, Compilers and Tools for Embeded Systems,
Berlin, Germany, ACM Press.

IBM (2003). Websphere MQ Family, IBM. 2003.
International, O. T. (2003). Eclipse Platform Technical Review. URL:

http://eclipse.org/whitepapers/eclipse-overview.pdf, IBM Corporation.
Jabber Software Foundation (2004). Jabber: Open Instant Messaging and a Whole Lot More -

http://www.jabber.org/.
Jacques, M. (2004). API Usability: Guidelines to improve your code ease of use -

http://www.codeproject.com/gen/design/APIUsabilityArticle.asp, The Code Project.

UCI-ISR-05-8 - May 2005

 76

Jin, Y. and R. Storm (2003). Relational Subscription Middleware for Internet-Scale Publish-Subscribe.
International Workshop on Distributed Event-Based Systems (DEBS'03), San Diego.

Johnson, R. E. and B. Foote (1988). "Designing Reusable Classes." Journal of Object Oriented Program-
ming - JOOP 1(2): 22-35.

Kantor, M. and D. Redmiles (2001). Creating an Infrastructure for Ubiquitous Awareness. Eighth IFIP TC
13 Conference on Human-Computer Interaction (INTERACT 2001), Tokyo, Japan.

Kiczales, G. (1996). Beyond the black box: open implementation. IEEE Software. 13: 8,10-11.
Kiczales, G., E. Hilsdale, et al. (2001). Getting started with ASPECTJ. Communications of the ACM.

ACM. 44: 59-65.
Kiczales, G., J. Lamping, et al. (1997). Open Implementation Design Guidelines. International Conference

of Software Engineering (ICSE'97), Boston, MA, ACM Press.
Krishnamurthy, B. and D. S. Rosenblum (1995). "Yeast: A General Purpose Event-Action System." IEEE

Transactions on Software Engineering 21(10): 845-857.
Krueger, C. W. (1992). "Software Reuse." ACM Computing Surveys 24(3): 131-184.
Ledoux, T. (1999). "OpenCorba: A Reflective Open Broker." Lecture Notes in Computer Science 1616:

197-214.
Lientz, B. P. and E. B. Swanson (1980). Software Maintenance Management: A Study of the Maintenance

of Computer Application Software in 487 Data Processing Organizations (Ch. 27). Rading, MA,
Addison-Wesley.

Lopes, C. V. (2002). Aspect-Oriented Programming: An Historical Perspective (What’s in a Name?).
Technical Report UCI-ISR-02-5. Irvine, Institute for Software Research.

Lopes, C. V. and T. C. Ngo (2004). The Aspect Oriented Markup Language and its Support of Aspect
Plugins - UCI-ISR-04-8. Irvine, UC, Irvine.

Lövstrand, L. (1991). Being Selectively Aware with the Khronika System. European Conference on Com-
puter Supported Cooperative Work (ECSCW '91), Amsterdam, The Netherlands.

Maeda, C., A. Lee, et al. (1997). Open implementation analysis and design. 1997 symposium on Software
reusability, Boston, MA, ACM Press.

Mansouri-Samani, M. and M. Sloman (1997). GEM: A Generalised Event Monitoring Language for Dis-
tributed Systems. IFIP/IEEE International Conference on Distributed Platforms
(ICODP/ICDP'97), Toronto, Canada.

Mayer, J., I. Melzer, et al. (2003). Lightweight Plug-In-Based Application Development. Lecture Notes in
Computer Science. M. M. M. Aksit, R. Unland, Springer-Verlag Heidelberg. 2591: 87 - 102.

McIlroy, M. D. (1968). Mass Produced Software Components. In Software Engineering: A Report on a
Conference Sponsored by the NATO Science Committee. P. Naur and B. Randell (eds.), Gar-
misch, Germany.

McLellan, S. G., A. W. Roesler, et al. (1998). "Building more usable APIs." IEEE Software 15(3): 78-86.
Microsoft (2003). Building Distributed Applications with Message Queuing Middleware.
Naslavsky, L., R. S. Silva Filho, et al. (2004). Distributed Expectation-Driven Residual Testing. Second

International Workshop on Remote Analysis and Measurement of Software Systems (RAMSS'04),
Edinburgh, UK.

Nielsen, J. (1993). What is Usability? Usability Engineering (Chapter 2). J. Nielsen, Morgan Kaufman: 23-
48.

Norman, D. (1988). The design of everyday things.
Notkin, D. and W. G. Griswold (1988). Extension and software development. 10th international conference

on Software engineering, Singapore, IEEE Compter Societ press.
Oliva, A. and L. E. Buzato (1999). The Design and Implementation of Guaraná. 5th USENIX Conference

on Object-Oriented Technologies and Systems (COOTS '99), San Diego, CA.
OMG (2001). CORBA Event Service Specification (version 1.1), Object Management Group.
OMG (2002). CORBACos: Notification Service Specification v1.0.1, Object Management Group.
Parnas, D. L. (1972). On the Criteria to Be Used in Decomposing Systems into Modules. Communications

of the ACM. 15: 1053-1058.
Parnas, D. L. (1978). Designing software for ease of extension and contraction. 3rd international confer-

ence on Software engineering, Atlanta, Georgia, USA, IEEE Press.
Paton, N. W. and O. Diaz. (1999). "Active Database Systems." ACM Computing Surveys 31(1): 63-103.
Patterson, J. F., M. Day, et al. (1996). Notification servers for synchronous groupware. ACM conference on

Computer supported cooperative work (CSCW'96), Boston, Massachusetts.

UCI-ISR-05-8 - May 2005

 77

Roberts, D. and R. Johnson (1996). Evolving Frameworks: A Pattern Language for Developing Object-
Oriented Frameworks. Pattern Languages of Program Design 3. A. Wesley.

Rosenblum, D. S. and A. L. Wolf (1997). A Design Framework for Internet-Scale Event Observation and
Notification. 6th European Software Engineering Conference/5th ACM SIGSOFT Symposium on
the Foundations of Software Engineering, Zurich, Switzerland, Springer-Verlag.

Sahingöz, Ö. K. and N. Erdogan (2003). RUBCES: Rule Based Composite Event System. XII. Turkish
Artificial Intelligence and Neural Network Symp. (TAINN'03), Turkey.

Sahingöz, Ö. K. and N. Erdogan (2003). "RUBDES: Rule Based Distributed Event System." Lecture Notes
in Computer Science 2869/2003: 284-291.

Sarma, A., Z. Noroozi, et al. (2003). Palantír: Raising Awareness among Configuration Management
Workspaces. Twenty-fifth International Conference on Software Engineering, Portland, Oregon.

Schmidt, D. C. and C. Cleeland (1999). Applying a Pattern Language to Develop Extensible ORB Middle-
ware. EEE Communications Magazine. L. Rising, Cambridge University Press. 37: 54-63.

Schmidt, D. C. and C. Cleeland (2000). Applying a Pattern Language to Develop Extensible ORB Middle-
ware. Design Patterns and Communications. L. Rising, Cambridge University Press.

Shen, H. and C. Sun (2002). Flexible notification for collaborative systems. ACM conference on Computer
supported cooperative work (CSCW'02), New Orleans, Louisiana, USA, ACM.

Siegel, J. (1998). OMG overview: CORBA and the OMA in enterprise computing. Communications of the
ACM. 41: 37-43.

Silva Filho, R. S., C. R. B. de Souza, et al. (2003). The Design of a Configurable, Extensible and Dynamic
Notification Service. International Workshop on Distributed Event Systems (DEBS'03), San
Diego, CA.

Silva Filho, R. S., C. R. B. De Souza, et al. (2004). Design and Experiments with YANCEES, a Versatile
Publish-Subscirbe Service - TR-UCI-ISR-04-1. Irvine, CA, University of California, Irvine.

Silva-Filho, R. S., C. R. B. deSouza, et al. (2003). The Design of a Configurable, Extensible and Dynamic
Notification Service. Second International Workshop on Distributed Event-Based Systems
(DEBS'03), San Diego, CA, USA.

Silva-Filho, R. S., C. R. B. d. Souza, et al. (2004). Design and Experiments with YANCEES, a Versatile
Publish-Subscirbe Service. Irvine, CA, Institute for Software Research.

Singhai, A., A. Sane, et al. (1998). Quarterware for middleware. 18th International Conference on Distrib-
uted Computing Systems, Amsterdam, The Netherlands.

Sommerville, I. (2001). Software Engineering (6th Edition).
Sonic (2003). Using SonicMQ® to Extend J2EE Application Server Capabilities, Sonic Software. 2003.
SUN (2003). Java Message Service API, SUN. 2003.
Sun Microsystems (2003). Java Message Service API, Sun Microsystems. 2003.
Taylor, R. N., N. Medvidovic, et al. (1996). A Component- and Message-Based Architectural Style for GUI

Software. IEEE Transactions on Software Engineering. 22: 390-406.
Tokuda, L. and D. Batory (2001). "Evolving Object-Oriented Designs with Refactorings." Journal of

Automated Software Engineering 8(1): 89-120.
Vargas-Solar, G. and C. Collet (2002). ADEES: An Adaptable and Extensible Event Based Infrastructure.

13th International Conference, DEXA 2002 Aix-en-Provence.
Venkatasubramanian, N. (2002). Safe Composability of Middleware Services. Communications of the

ACM. 45: 49-52.
Wichman, J. C. (1999). ComposeJ: The Development of a Preprocessor to Facilitate Composition Filters in

the Java Language, Master's thesis. Dept. of Computer Science. Twente, University of Twente.
Wilson, G. V. (2004). Extensible programming for the 21st century. ACM Queue. 2: 48-57.
Wirth, N. (1971). Program Development by Stepwise Refinement. Communications of the ACM. 14: 221-

227.
Wirth, N. (1995). A plea for lean software. IEEE Computer. 28: 64-68.
Wyckoff, P. (1998). "TSpaces." IBM Systems Journal 37(3).
Zavattaro, G. and N. Busi (2001). Publish/subscribe vs. Shared Dataspace Coordination Infrastructures.

10th IEEE Workshop on Enabling Technologies: Infrastructures for Collaboratice Enterprises,
Boston, MA.

Zhang, C. and H.-A. Jacobsen (2004). Resolving feature convolution in middleware systems. 19th annual
ACM SIGPLAN Conference on Object-oriented programming, systems, languages, and applica-
tions, Vancouver, BC, Canada, ACM.

