Managing Feature Interaction by
Documenting and Enforcing
Dependencies
In Software Product Lines

Roberto S. Silva Filho and
David F. Redmiles

Donald Bren School of Information and Computer Sciences
Department of Informatics
University of California, Irvine
{rsilvafi, redmiles}@ics.uci.edu

International Conference on Feature Interaction, Grenoble, France, 3-5 Sep. 2007

Introduction

= This project was motivated by our research in the area of
Infrastructures for collaboration.

= We were interested in the design of a notification server
that could support the different requirements from:
= Collaborative software engineering
= Software monitoring
= P2P groupware tools
= Other applications to come...

= For such, we designed and implemented YANCEES (Yet
ANother Configurable and Extensible Event Service)

Introduction (cont)

In the design and implementation of YANCEES we adopted:

= Well-known software product lines (SPL) methodology

= and variability implementation approaches
YANCEES was extended and configured in the support of different
applications

= P2P collaboration tools, application monitoring and awareness

However, during the design, implementation and use of the
infrastructure, many issues emerged

The analysis of these issues revealed dependencies as the major
factors behind these problems

In particular, the lack of documentation and enforcement of
dependencies may mislead software engineers in the extension and
configuration of the SPL, leading to feature interference

Introduction (cont)

= The first part of the presentation discusses our
experience in the design and implementation of

YANCEES focusing on:

» The kinds of feature interference faced in this process
» The role of dependencies behind those issues

" |n the second part, we discuss our current solution to
feature interaction management:
= A formal notation to document dependencies in the

product line code
» That is both human-readable and
= Automatically enforced by the infrastructure

Background: Publish/Subscribe infrastructures

= The publish/subscribe communication style provides:

= Location and timing decoupling between producers and consumers of
information

= Supports 1-to-n event-based communication, with optional filtering
mechanisms

= This communication style is usually implemented by a logically
centralized service

» That intermediates the communication between publishers and
subscribers of events (or messages) in a distributed setting.

events

- subscribe
l PUB/SUD <~ -
noti

\notifications

YANCEES case study

Yet ANother Configurable and
Extensible Event Service

YANCEES motivation

= Motivated by the need to support application domains
with different requirements (or feature sets)

= For example:

= Software monitoring

= Subscription supporting event sequence detection,
summarization and abstraction

= Awareness applications

» Protocols that allow event source browsing and
advertisement

= Peer-to-peer collaboration
= Fast event routing with P2P federation of servers

= and others...

YANCEES commonality and
variability design

Common publish/subscribe behavior

Designed support for different variability dimensions
around an extended version of [Rosemblum, Wolf 97]
model

= Event (record, object, attribute/value pair, text)
Subscription (sequence or content-based operators)
Notification (push, pull)
Protocol (infrastructure: P2P and user-level: mobility)
Publication (global filtering)

Achieving different emerging characteristics
= Event delivery guarantees (best effort, assured delivery)
= Order (total order, partial order, best effort)
= Timing (delays between consecutive events)

YANCEES Implementation strategies

Reuse of common pub/sub behavior:
= Framework providing abstract publish/subscribe process
= Generic event representations

Runtime variability supporting dynamic subscriptions/notification
policies through the use of:

= Extensible languages (XML) and plug-ins
= Controlled by dynamic parsers and builders

Load-time variability of static services (protocol, publication, event
format) by using:

= Static general-purpose plug-ins

= Adapters

= Filters

= Controlled by architecture manager (builder)

YANCEES Approach Summary

[components

|

(A description
YANCEES core
_ ~ l
e)
plug-ins, filters N
and adapters —> N
> | R
notification, event and - \\&‘\"
subscription languages startup-time
9 (XMLSchema) builder
/" [Publisher

-

Statically loaded filters and
protocol plug-ins

Dynamically loaded
subscription and notification

plug-ins

= according to user-provided
subscriptions

domain-specific YANCEES instance

T = = e e e e e = = = e Em Em mm mm e e e e e e = e e e Em Em M e Em e e e e e e e em e e e mm e e e e e e e

Cfiter

ub/sub
core

e e e e o o L L i i i i i =

YANCEES Design and
Implementation Issues

The role of dependencies In
limiting configurability and
extensibility in software

The role of dependencies

Fundamental (or problem domain) dependencies
* |ntegrate the common components of the infrastructure

Configuration-specific dependencies
* |ntegrate features that extend the common behavior

Incidental (or technological) dependencies

= Come as a consequence of the implementation and
variability realization approaches adopted.

Implicit dependencies on emerging system properties
= Represent complex behavior dependencies in the system

12

YANCEES implementation issues

Fundamental dependencies. The variability dimensions selected
were not orthogonal

= For example, changes in the event format, federation protocol, or
routing strategy may impact features in other variation points.

Configuration-specific dependencies. Changes in existing features
may impact other features that depend on them

Incidental dependencies. The benefits of using variability
approaches (design patterns, plug-ins, extensible languages, etc.)
come with extra costs:

= new configuration rules

= Including activation and installation order, incompatibilities, and use
dependencies

Emerging System properties. Developers cannot understand the
global consequences of choosing a complex set of features
» For example, the impact of changes in the timing and event delivery guarantees

13

Dependencies In action

Example: extending YANCEES to
support Impromptu, a P2P file
sharing tool

YANCEES Generalized framework

YANCEES Common behavior

Publishers

" Dynamic parsers (publication and notification mediators) allocate

Event
Queue

| ' Notification
| e
e /

. dynamic’build "~~~ "dynamic’build” ™ :

| Publication Notification |

| Mediator Mediator ||

| aaaan. e |

Parsers

__

subscription and naotification plug-ins on demand

= QOther variation points: protocol and publication models are extended

through the use of static plug-ins

Subscribers

15

Configuration Example

Impromptu YANCEES

Publication
Publishers .: Repeated K SendTo | | Event
L Events Peers ' | Queue
N addPeer) > [
| removePeer() :
MDNS iy mDNs .
notifications 11 Publisher i
| Protocol

Content
Filter

Topic
Filter

R RRDTIEEEEEEEE
~~ “dynamicbuild”~ " "

Subscribers

"

dyramicbuld ™
Publication Notification
Mediator Mediator
Parsers

subscription

Other
YANCEES

Instances

Events published to and coming from peers

= Application: Impromptu P2P file sharing
= Configuration
Event : Attribute/value
Subscription: Content or topic filter with sequence detection
Protocol: P2P - multicast DNS and publication interceptor
Notification: Push
Publication: repeated events filtering

16

Dependency-driven
Interference

Extensibility and configurability
Issues In YANCEES

Fundamental (or problem domain)
dependencies

Impromptu YANCEES

Other
YANCEES
Instances

Publication ' | Content i,_'\l_c_)'f'f"f?'f'f)_n_,
i ! 7] Filter N 1

Publishers :: Riliijtzd Ssggr;‘o : 5\::32 | :. Push i: Subscribers
N : | Topic i ¥
X ' ! Filter | ! e AT '

ame—y | /E

MDNS Pger :i dynamicTbuild” namic’build '/ subscription
notifications Publisher | 1 Publication tification | ¥
____________ 1 Mediator diator |} |

Through fundamental dependencies,
changes in the event format, timing
and order behaviors may:

- invalidate the publication filters 18

- It can also invalidate subscription plug-ins

Configuration-specific
dependencies

Impromptu YANCEES

i Publication
Publishers — : Repeated SendTo | | Event
i Events Peers | ! | Queue
§ S addPeer) —> 1
mDNS ¥ removePeer() | Peer
> mMDNS .
notifications i :r Publisher

Subscribers

' Notification
Content S {rom oo oo
Filter i .
| Push
Topic L
Filter i' ----- iy
4 b= sl /

Through configuration-specific dependencies:
- the P2P publication will only work if all the

components are properly installed
- Incompatible versions may result in
interference

/
Events publishef

Notification
Mediator

subscription

Other
YANCEES

Instances

Vg from peers

- sequence detection plug-in works with
ContentFilter but not with Topic filter

- topic and content filters may change the
order of the events when taking part in the
same subscription

Incidental (or technological)
dependencies

Impromptu YANCEES

Publication : Content
| B e S i e e = 1 | . K
[! /| Filter
Publshers 11 e ot S0 ol Guene [

I R : ! Topic

E'L______ﬂ _______________ ' ! Filter

i : addPeer() : :_______ N .
mDNS :L L removePeer() Peer i i dynamiclbuild” dy subscription
notifications |1 Publisher | | i Publication Notification

N ¥ Mediator Mediator

Parsers

Other
YANCEES

Instances

Events\,\ \%dcoming from peers

the chain-of responsibility may lead to

interference if changes occur in:

- the order of the filters

- the content or number of attributes in
the events

Multiple writes queue:
through PeerPublisher, events may

the subscription filters

come out of order when examined by

20

Dependencies on emerging system

properties

Impromptu YANCEES

Publication
Publishers .: Re_peatgd Send To | ' | Event
L Events Peers ' | Queue
SR addPeer) ——> 1
i removePeer()
mDNS > mMDNS el
notifications X Publisher
i Protocol

Content
Filter

Topic
Filter

N)
. dynamic’build =~ " "dynamic’/build

Subscribers

| Publication Notification

! Mediator Mediator ||

6 —_— :
Parsers

subscription

Other
YANCEES

Instances

Events published to and coming from peers

Implicit assumptions exist with respect to emerging system properties.
These properties may change due to complex dependencies:

- Timing (delay between events) - distribution, input filters side effects
- Order of the events (total, partial) - input filters, peer publisher plug-in

21

Managing dependency-
driven interference

By documenting and enforcing
dependencies in the code

Approach

= Document and enforce different kinds of
dependencies in the infrastructure.

» Make dependencies explicit since the design
= Use dependency analysis models

» Make dependencies explicit in the code
= At both variation points and feature implementation

* Enforce these properties through the use of static and
dynamic configuration managers

= Runtime subscription/natification parsers and composition filters
= | oad time static configuration manager (architecture manager)

23

Making dependencies
explicit In the design

Using additional dependency
analysis models

Analysis of fundamental
dependencies

<<kernel, logic>>

Is a concern
between routing

and subscription

Is a consequence
of distribution

<<optional, control>>

Notification User Protocol
sends ' iters <<kernel, logic>>
< <control>>¢ Publication filters according to <<implicit>>
<<data>> _..-t————, <<control>>",
S T T L T affected by | Fesource
% e e m<<control>>.-7 A
<<kernel, entity>> IS <<implicit, logic>> _<<control>> | <<;r_25)7lll§ll7t>> 1
Event < <<data>> Routing guaranteed by A 9 connects. <<optional, control>>
routes,. :
R r\ <<control>>, Protocol
Is a concern between <<data,c0;‘«;_tro|>:><<kerne|,_ logic>> queries order
the event format Subscription i<<control>>
<<data>> ™ ;
and the operators . \
gueries content \
<<optional, logic>> <<optional, logic>> <<optional, control>>

Content operator

Order operator

Infra Protocol

= In the product line design, consider the impact of fundamental dependencies

= Also model implicit properties and configuration-specific dependencies (in italic)

25

Implementation

= YANCEES was extended with:

= Documentation notation:

= Based on JDK 1.6 annotations API, expressing the different
kinds of dependencies

= A variability model (VariabilityModel.java) that provides a
single point of access to the main variation points and
emerging properties

» Enforcement capabillity:

= Dependency-aware dynamic and static parsers

= Composition filters (implemented as plug-ins and filers
wrappers) to enforce provided and required configuration-
specific properties at runtime

26

Code Example — input filter and variation point annotations

// Abstract input filter Variation Point

public abstract class AbstractFilter implements Filterinterface {
//--- Abstract implementation goes here ---

}

// concrete implementation of the PublishToPeers filter Feature

public class SentToPeerslnputFilter extends AbstractFilter {
// —-- plug-in implementation ---

} 27

Code Example — input filter and variation point annotations

// --- Indicates what variation point this class implements ---
@ImplementsVariationPoint(VariabilityModel .VariationPoints.PUBLICATION)

public abstract class AbstractFilter implements Filterinterface {

//--- Abstract implementation goes here ---
¥
Identifies variation — _—
points and features
// --- Feature unique ID ---
@ImplementsFeature(name = ""Publication.PublishToPeers™, version="1.0")
public class SentToPeerslnputFilter extends AbstractFilter {
// —-- plug-in implementation ---

} 383

Code Example — fundamental dependencies

//--- Indicates fundamental dependencies on other variation points ---
@DependsOnVP(VariabilityModel .VariationPoints.EVENT)

// --- Indicates what variation point this class implements ---
@ImplementsVariationPoint(VariabilityModel .VariationPoints.PUBLICATION)

public abstract class AbstractFilter implements Filterinterface {
//--- Abstract implementation goes here --- Fundamental

1 dependency to

the event model

// --- Feature unique ID ---
@ImplementsFeature(name = ""Publication.PublishToPeers™, version="1.0")
public class SentToPeerslnputFilter extends AbstractFilter {
// —-- plug-in implementation ---
¥

Code Example — configuration-specific dependencies

//--- Indicates fundamental dependencies on other variation points ---
@DependsOnVP(VariabilityModel .VariationPoints.EVENT)

// --- Indicates what variation point this class implements ---
@ImplementsVariationPoint(VariabilityModel .VariationPoints.PUBLICATION)

public abstract class AbstractFilter implements Filterinterface { CXJnﬂgurann-specﬁu:
//--- Abstract implementation goes here --- dependency to:

1 YanceesEvent.class

implementation

// —-—- Compatibility with features and emerging properties ---
@CompatibleWithFeature(
variationPontType = VariabilityModel .VariationPoints.EVENT,
featureClass= edu.ucli.isr.yancees.YanceeskEvent.class, version=“3.0",
featureName=""Event._AttributeValueEvent')

// --- Feature unique ID ---
@ImplementsFeature(name = ""Publication.PublishToPeers™, version="1.0")
public class SentToPeerslnputFilter extends AbstractFilter {
// —-- plug-in implementation ---
¥

Code Example — incidental dependencies

//--- Indicates fundamental dependencies on other variation points ---
@DependsOnVP(VariabilityModel .VariationPoints.EVENT)

// --- Indicates what variation point this class implements ---
@ImplementsVariationPoint(VariabilityModel .VariationPoints.PUBLICATION)

public abstract class AbstractFilter implements FilteriInterface {
//--- Abstract implementation goes here ---

}

// --- Local configuration concerns ---

@ProvidedGuarantees(modifyEventContent=false, modifyEventOrder=false,
modifyEventType=false)

@RequiredGuarantees(intactEventContent=false, intactEventOrder=false,
intactEventType=false)

// —-—- Compatibility with features and emerging properties ---
@CompatibleWithFeature(
variationPontType = VariabilityModel .VariationPoints.EVENT,
featureClass= edu.uci.isr.yancees.YanceesEvent.class,

featureName="Event.AttributeValueEvent') Incidental

dependencies tailored
to the chain of
responsibility pattern

// --- Feature unique ID ---
@ImplementsFeature(name = ""Publication.PublishToPeers™, version="1.0")
public class SentToPeerslnputFilter extends AbstractFilter {

// —-- plug-in implementation ---

}

Code Example — emerging system properties

//--- Indicates fundamental dependencies on other variation points ---
@DependsOnVP(VariabilityModel .VariationPoints.EVENT)

// --- Indicates what variation point this class implements ---
@ImplementsVariationPoint(VariabilityModel .VariationPoints.PUBLICATION)

public abstract class AbstractFilter implements FilteriInterface {

//--- Abstract implementation goes here ---

ke

// --- Local configuration concerns ---

@ProvidedGuarantees(modifyEventContent=false, modifyEventOrder=false,
modifyEventType=false) Emerging system

@RequiredGuarantees(intactEventContent=false, intactEventOrder=false, properﬁes
intactEventType=false) -

compatibility

// —-—- Compatibility with features and emerging properties ---
@CompatibleWithFeature(
variationPontType = VariabilityModel .VariationPoints.EVENT,
featureClass= edu.uci.isr.yancees.YanceesEvent.class,
featureName=""Event.AttributeValueEvent')

@CompatibleWithProperties(
resource = VariabilityModel .Resource.ANY,
routing = VariabilityModel .Routing.ANY,
timing = VariabilityModel .Timing.ANY)

// --- Feature unique ID ---
@ImplementsFeature(name = ""Publication.PublishToPeers™, version="1.0")
public class SentToPeerslnputFilter extends AbstractFilter {

// —-- plug-in implementation ---

} e

Outcome

= By using this strategy, software product line developers
can:

Document the existing dependencies
Provide mechanisms to enforce the different dependencies

= Whereas software engineers that extend and configure
the infrastructure are informed about inconsistencies

At extension time, when reading the code and programming the
extension

At configuration time, when deciding which components to
Integrate

At load time through error messages

At runtime through exceptions (on subscription and publication N
commands)

Conclusions

The gains in reuse and variability provided by SPLs as YANCEES
come with the increase in the software complexity

This complexity is a function of different kinds of software
dependencies and the design for variability

When not documented and managed, dependencies lead to feature
interference.
This paper:
= Describes the kinds of dependencies found in the design and
implementation of YANCEES

= And exemplifies the feature interference resulting from these
dependencies
» Proposes a formal documentation strategy to make dependencies
explicit in a way that:
= |s both machine and human readable
= Support runtime and static configuration
= Helping software engineers in preventing feature interference

34

Future Work

Automate the detection of dependencies
= Currently, they are manually annotated by software engineers

= And provided as template code for third-party developers, at
every variation point

Perform user studies to determine the usability of the
approach

Generalize the annotation model and the framework,
retrofitting existing frameworks/product lines

= Currently, the annotations and implementation are tailored to
support YANCEES only.

35

Thank you

Questions/comments?

References

Bergmans, L. and Aksit, M. Composing Crosscutting Concerns Using Composition Filters. Communications of the ACM, 44 (10).
51-58.

Birsan, D. On Plug-ins and Extensible Architectures ACM Queue, 2005, 40-46.

Bosch, J., Evolution and Composition of Reusable Assets in Product-Line Architectures: A Case Study. in TC2 First Working IFIP
Conference on Software Architecture (WICSAL), (1999), Kluwer, B.V, 321 - 340.

Bowen, T.F., Dworack, F.S., Chow, C.H., Griffeth, N., Herman, G.E. and Lin, Y.-J., The feature interaction problem in
telecommunications systems. in Software Engineering for Telecommunication Switching Systems, (1989), 59 - 62.

Bryant, A., Catton, A., Volder, K.D. and Murphy, G.C., Explicit Programming. in 1st AOSD, (Enschede, The Netherlands, 2002).
Coplien, J., Hoffman, D. and Weiss, D. Commonality and Variability in Software Engineering IEEE Software, 1998, 37-45.
Czarnecki, K. and Eisenecker, U.W. Generative Programming - Methods, Tools, and Applications. Addison-Wesley, 2000.
Deelstra, S., Sinnema, M., Nijhuis, J. and Bosch, J. Experiences in Software Product Families: Problems and Issues during
Product Derivation, SPLC'04. Springer Verlag LNCS, 3154. 165-182.

DePaula, R., Ding, X., Dourish, P., Nies, K., Pillet, B., Redmiles, D., Ren, J., Rode, J. and Silva Filho, R.S. In the Eye of the
Beholder: A Visualization-based Approach to Information System Security. IJCHS - Special Issue on HCI Research in Privacy and
Security, 63 (1-2). 5-24.

Dingel, J., Garlan, D., Jha, S. and Notkin, D., Reasoning about implicit invocation. in 6th International Symposium on the
Foundations of Software Engineering (FSE-6), (Lake Buena Vista, FL, USA, 1998).

Ferber, S., Haag, J. and Savolainen, J. Feature Interaction and Dependencies: Modeling Features for Reengineering a Legacy
Product Line. LNCS. Second International Conference on Software Product Lines, SPLC'02, 2379. 235-256.

Fowler, M. Inversion of Control Containers and the Dependency Injection Pattern,
http://www.martinfowler.com/articles/injection.html, 2004.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley Publishing Company, 1995.

Hunleth, F. and Cytron, R.K., Footprint and feature management using aspect-oriented programming techniques. in Joint
conference on Languages, compilers and tools for embedded systems, (Berlin, Germany, 2002), ACM Press, 38 - 45.

Jacobson, I., Griss, M. and Jonsson, P. Software Reuse. Architecture, Process and Organization for Business Success. Addison-
Wesley, 1997.

37

References (cont)

Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E. and Peterson, A.S. Feature-Oriented Domain Analysis (FODA) Feasibility
Study - CMU/SEI-90-TR-021, Carnegie Mellon Software Engineering Institute, Pittsburgh, PA, 1990.

1Krueger, C. Software Product Line Concepts: www.softwareproductlines.com/

introduction/concepts.html, The Software Product Lines site, 2006.

Krueger, C.W., Software product line reuse in practice. in 3rd IEEE Symposium on Application-Specific Systems and
Software Engineering Technology, (Richardson, TX, USA, 2000), 117-118.

Lee, K. and Kang, K.C. Feature Dependency Analysis for Product Line Component Design. Lecture Notes in Computer
Science - 8th International Conference on Software Reuse, ICSR'04, 3107. 69-85.

Metzger, A., Bihne, S., Lauenroth, K. and Pohl, K., Considering Feature Interactions in Product Lines: Towards the
Automatic Derivation of Dependencies between Product Variants. in Feature Interactions in Telecommunications and
Software Systems VIII, (Leicester, UK, 2005), 198-216.

Rosenblum, D.S. and Wolf, A.L., A Design Framework for Internet-Scale Event Observation and Notification. in 6th
ESEC/FSE, (Zurich, 1997), Springer-Verlag, 344-360.

Silva Filho, R.S. and Redmiles, D., Striving for Versatility in Publish/Subscribe Infrastructures. in 5th International Workshop
on Software Engineering and Middleware (SEM'2005), (Lisbon, Portugal., 2005), ACM Press, 17 - 24.

Silva Filho, R.S. and Redmiles, D.F. A Survey on Versatility for Publish/Subscribe Infrastructures. Technical Report UCI-ISR-
05-8, ISR, Irvine, CA, 2005, 1-77.

Sinnema, M. and Deelstra, S. Classifying variability modeling techniques. Information and Software Technology, 49 (7). 717-
739.

Sinnema, M., Deelstra, S., Nijhuis, J. and Bosch, J. COVAMOF: A Framework for Modeling Variability in Software Product
Families. LNCS, 3154/2004. 197-213.

Svahnberg, M., Gurp, J.v. and Bosch, J. A Taxonomy of Variability Realization Techniques. Software Practice and
Experience, 35 (8). 705-754.

Szyperski, C. Component Software: Beyond Object-Oriented Programming, 2nd edition. ACM Press, 2002.

Zibman, |., Woolf, C., O'Reilly, P., Strickland, L., Willis, D. and Visser, J. An architectural approach to minimizing feature
interactions in telecommunications. IEEE/ACM Transactions on Networking, 4 (4). 582-596. 38

