
1

The Design of a Configurable, 
Extensible and Dynamic 
Notification Service

Roberto S. Silva Filho

Cleidson R. B. de Souza

David F. Redmiles

School of Information and Computer Science

UCI - University of California, Irvine

{rsilvafi, cdesouza, redmiles}@ics.uci.edu



2

Outline

� Motivation Problem

� Approach

� Design

� Examples

� Implementation

� Conclusions and Future work



3

Project Motivation

� The need for an event-based infrastructure 

to:

� support requirements from different application 
domains

� groupware, software monitoring, awareness, mobility...

� support new functionality as necessary

� provide the right functionality set to each 
application domain

� provide a single model for different applications



4

Application domains

� What we wanted is a configurable event-notification 
service that can be easily customized, and extensible 
to support different domains such as:

� Mobility
� pull, persistency, roaming protocol, authentication

� Awareness
� event persistency and typing, event validity (time-to-live), 

event sequence detection, push and pull delivery; event 
source browsing (discovery)

� Application monitoring
� event sequence detection; event abstraction; browsing of 

information sources and their events; event persistency; 
push and pull



5

Problems with current event 

notification servers

� Specialized approaches
� Domain specific notification servers

� such as Khronika, CASSIUS, JEDI, EBBA

� Generic approaches
� “one-size-fits-all”

� such as READY, CORBA-NS

� content-based
� such as Siena, Elvin

� Problem: poor or no support for extensibility 
and configurability



6

Our Approach

� Provide a framework to support extensibility and 
configurability of notification servers

� Based on:

� Plug-ins

� Extensible event, notification and subscription 
languages

� Extensible protocols

� Dynamic parsers

� Configuration managers

� Around a simple publish/subscribe core



7

Our approach

� Configurations are represented as sets of 
plug-ins and a publish/subscribe core adapter

� Plug-ins are used to extend the basic event 
dispatcher functionality, notification 
mechanisms and protocols

� Parsers convert subscriptions, notification 
preferences and protocols into evaluation 
trees based on plug-in instances

� Plug-ins can be downloaded, at runtime, if 
not currently installed



8

Adapter extension using plug-ins

<subscription>
<followed-by>
<filter>...</filter>
<filter>...</filter>
</followed-by>

</subscription>
<notification>
<pull/>

<notification> Siena adapter

Siena

<filter> <filter>

<subscription>

<followed-by>
Mapped to

subscribe

Subscription evaluation tree

XML subscription

Subscription 
manager

dynamic parser

� Approach valid to protocol, notification and protocol plug-ins too



9

Our strategy

� To address the problem based on the design 
models proposed by [Cugola et al. 01] and 
inspired by [Rosemblum and Wolf 97].

� In other words, provide a way to customize 
and extend the following design models:
� Event

� Subscription

� Notification

� Resource

� Protocol (introduced here)



10

Notification, Subscription and 
Protocol Models

� Event model
� Example: Tuple-based, type-based, object-based

� Subscription model
� Example: sequence, abstraction, rules, content-
based queries, and so on…

� Notification model
� Example: push, pull, other notification policy…



11

Event and Resource models

� Resource model

� Example: client side and server side plug-ins

� Protocol model

� Example: security, mobility, authentication…

� All models are extended by:
� Plug-ins

� Specific language definitions

� Managers that interpret the language with the 
plug-ins.



12

Architecture overview

Adapter

Event
Dispatcher

Subscription
Manager

Plug-in
Manager

Notification
Manager

Protocol
Manager

S
u
b
scrip

. 
P
lu
g
-in

N
o
tifica

tio
n
 

p
lu
g
-in
s

C
o
n
fig
. M

a
n
a
g
e
r

P
ro
to
co
l p
lu
g
-in
s

events

notifications

subscriptions

messages



13

Subscription parsing example

<subscription>
<followed-by>
<filter>...</filter>
<filter>...</filter>
</followed-by>

</subscription>
<notification>
<pull/>

<notification>

Queries: <followed-by>
<filter> <pull>
<subscription>

Builds

expression

Send results to

subscribers

Event Adapter (Siena)

Subscription
Manager

Plug-in
manager

Notification
Manager

Pull
plug-in
factory

Filter
plug-in
factory Output buffer

notifies

<pull>

plug-in inst

<subscription>

plug-in inst

<followed-by>

Plug-in inst

Filter instFilter inst

results

Followed-by
plug-in
factory

Install factory



14

Extensibility summary

DESIGN 
DIMENSION

HOW TO EXTEND EXAMPLES

Subscription 
Model

Extensible subscription language
Provide feature specific event processing plug-ins

Event aggregation
Abstraction
Sequence detection 

Event Model Extensible event representation language
An event adapter for each dispatcher used
Plug-in to handle the dispatcher specific event 
language

Tuple based
Record based
Object based

Notification 
Model

Notification plug-ins (or filters)
Extensible notification language that allows the 
definition of notification policies

Push
Pull (with persistency)

Resource 
Model

Server configuration language and configuration 
manager that allows the distribution of event 
processing to server-side or client-side plug-ins 

Centralized
Partially distributed

Protocol 
Model

Extensible protocol language
Protocol plug-ins and protocol manager to handle 
different protocols

Security protocols
Mobility protocols
Configuration protocols



15

Implementation Status

� The following components are implemented:

� Subscription manager

� Plug-in manager

� Event dispatcher adapter using Siena.

� Simple plug-ins: sequence detection, rules

� The other components will be ready by the 
end of summer



16

Implementation status

Adapter

Event
Dispatcher

Subscription
Manager

Plug-in
Manager

Notification
Manager

Protocol
Manager

S
u
b
scrip

. 
P
lu
g
-in

N
o
tifica

tio
n
 

p
lu
g
-in
s

C
o
n
fig
. M

a
n
a
g
e
r

P
ro
to
co
l p
lu
g
-in
s

events

notifications

subscriptions

messages



17

Conclusions

� Extensibility needs to address issues in all the 
models (notification, subscription, event, 
resource) discussed. This can be addressed 
by:
� Runtime composition of plug-in instances

� Extensible languages

� Adapters (event dispatcher model)

� Plug-ins can also be used to better distribute 
processing through the components of the 
system.



18

Conclusions

� Configurability is provided by:

� The installation of specific plug-ins

� Selection of plug-ins in a configuration 
language

� Dynamism:

� Result of dynamic expression building

� Implemented by the installation of plug-ins 
at runtime.



19

Future work

� Investigate the problems related to timing

� Improve the implementation

� Test by implementing different configurations

� Compare results with existing notification 
servers such as CASSIUS and CORBA-NS

� Analyze the benefits and weaknesses of this 
approach



20

Questions?

� Research group: awareness.ics.uci.edu

� Project: www.ics.uci.edu/~rsilvafi



21

References

� G. Cugola, E. D. Nitto, and A. Fuggeta, "The Jedi 
Event-Based Infrastructure and Its Application on the 
Development of the OPSS WFMS," IEEE Transactions 
on Software Engineering, vol. 27, pp. 827-849, 2001.

� D. S. Rosenblum and A. L. Wolf, "A Design 
Framework for Internet-Scale Event Observation and 
Notification," presented at 6th European Software 
Engineering Conference/5th ACM SIGSOFT 
Symposium on the Foundations of Software 
Engineering, Zurich, Switzerland, 1997.


