
CORBA Based Architecture for Large Scale Workflow

Roberto Silveira Silva Filho, Jacques Wainer,
Edmundo R. M. Madeira

IC -Institute of Computing
UNICAMP - University of Campinas
13081-970 Campinas - SP - Brazil

{robsilfi, wainer, edmundo}@dcc.unicamp.br

Clarence Ellis
Department of Computer Science

University of Colorado, Boulder, CO 80309
skip@colorado.edu

Abstract
Standard client-server workflow management systems
have an intrinsic scalability limitation: the central server
is a bottleneck for large scale applications. It is also a
single fault point that may disable the whole system. We
propose a fully distributed architecture for workflow
management systems. It is based on the idea that the case
(an instance of the process) migrates from host to host,
according to the process definition specification, as the
corresponding activities are executed. This basic
architecture is improved so that other requirements for
Workflow Management Systems, besides scalability, are
also contemplated. A CORBA-based implementation of
such architecture is discussed, with both its limitations
and positive points described.

Key Words: Large Scale Workflow, Distributed Objects,
CORBA, and Mobile Agents.

1. Introduction

Workflow Management Systems (WFMS) are used to
coordinate and sequence business processes, such as loan
approval, insurance reimbursement, and other office or
assembly line procedures. Such processes are represented
as workflows: computer interpretable description of
activities (or tasks), and their execution order. The
workflow also describes the data available and generated
by each activity, synchronization points and so on. This
description should also express constrains and conditions
such as when the activities should be executed, a
specification of who can or should perform each activity,
and what tools and programs (such as word processors,
CAD and CASE systems, spreadsheets and others) are
needed during the activity execution. [3].

A WFMS can be seen as a set of control applications
and interfaces (to other tools and applications) that allow
the project, definition, execution, and monitoring of

workflows. The Workflow Management Coalition
(WFMC) specifies a set of terms, definitions, and
interfaces that standardizes most of the main aspects of a
WFMS [1,2].

Many academic prototypes and commercial WFMS
are based on the standard client-server architecture [2]. In
such systems, the Workflow Engine, the core of a WFMS,
is a server machine that typically stores both the workflow
data (the definition of the workflow and its activities, the
state and history information about each instance of the
workflow, and any other data related to the workflow
execution) and the application data (the data that is used
and generated by each activity within the workflow).

Such client-server centralized architecture represents a
limiting barrier for large-scale applications with (possibly)
many instances of a workflow being executed
concurrently. Furthermore, the use of a central database in
these systems represents a single failure point that can
paralyze the whole system and possible the whole
business itself. Therefore, WFMS based on centralized
client-server architectures are limited in providing
appropriate levels of scalability, fault tolerance and
availability, which may hind their use on an important set
of applications [4].

In this paper we introduce the WONDER (Workflow
on Distributed Environment) architecture, a WFMS that
addresses, in special, the scalability and availability
issues. Other requirements of a WFMS, such as fault
recovery, auditing and traceability are also addressed. In
the WONDER architecture, the control, the storage of
data, and the execution of the activities are all distributed
into a network of computers.

1.1. Terms

We will use, from now on, the following definitions: A
process (or process definition) is a workflow (the
description of a business process). A case is an instance of
a process. Thus, if purchase of office supplies is a
process, then Joe’s Friday request to purchase 500 paper

clips is a case. Processes are defined in terms of activities,
that is, predefined tasks usually performed by a single
person, or by a program. Role is the generic description of
a set of abilities required to perform certain activities.
Thus secretary, programmer, and reviewer, are roles.
People or programs that perform the activities are called
users or actors, and a particular user can fulfill many
roles. The process definition, which we will call a plan, is
described in terms of the Workflow Management
Coalition primitives: sequencing, and-joint, and-split, or-
joint, and or-split [2].

 1.2. Requirements for Workflow Systems

In this paper, we will address the following
requirements of a WFMS:

Scalability. The WFMS should not have its
performance degraded with the increase of: processes,
cases, activities within a workflow, volume of application
data, and number of actors that perform the activities.

Fault recovery. The WFMS should deal with both
software and hardware failures with the least intervention
of users as possible. Furthermore, the re-execution of
activities due to some failure should be avoided.

Availability. The WFMS must not become unavailable
for long periods of time, specially if mission critical
workflows are being executed.

Monitoring. The WFMS should be able to provide
current state information about all cases being executed.

Traceability. The WFMS should be able to keep all
history information about current and terminated cases.

Interoperability. Different WFMS should be able to
inter-operate.

Support for the use of external application tools.
The execution of a particular activity may require external
tools (such as word processors, spreadsheets, CAD
systems, expert systems, and so on). The WFMS should
be able to start such external applications and determine
when these tools have been terminated, managing the data
read and produced by these applications.

1.3. Paper Description

The next section discusses the general idea of the
WONDER architecture, describing its main components.
Section 3 discusses the implementation of that
architecture using CORBA. Section 4 presents some
implementation issues and Section 5 describes some
related work.

2. The Distributed Model

2.1. General description of the model

In general, and using informal terms, our architecture
is based on the idea that each case is a "mobile agent" that
moves from hosts to host as the activities are performed.
The case encapsulates both the application data and the
plan for that case (workflow control data), and "moves" to
a particular user’s host once it "figures out" that the next
activity will be performed by that user at that host. Once
the activity is finished, the case "figures out" the user who
will perform the next activity and moves to her host. This
"mobile agent" architecture copes with the scalability
requirement: there is no central control or data server,
therefore there is no performance bottleneck.

To deal with the other requirements, some components
are added to the architecture. For example, it is usually
the case that the plan of a process does not specify a
particular user as the performer of an activity, but only a
role. Consider a credit checking activity example, the plan
will state that the activity of credit checking should be
performed by a credit evaluator, but not a specific actor.
Hence, the plan does not provide enough information for
the "mobile agent" (the case) to "figure out” where to it
should migrate. In order to cope with this requirement, a
role coordinator component, containing information of
each role coordinator, is defined: the case queries the
particular role coordinator, in the example above, the
credit evaluator coordinator, and asks it for an user to
perform that activity, satisfying some requirements. Once
figured out the user, the case moves to that user's hosts.

Monitoring is also an issue in our "mobile agent
architecture": how do we find out, without broadcasting,
what is the current state of a case, since it may be in any
of the hosts in the network? A case coordinator
component that keeps track of the case as it moves along
was defined: each time a case moves to a new user's host,
it sends a notification to its case coordinator. Therefore
the case coordinator knows where and at which process
stage is a case.

Another important problem for the mobile agent
architecture is failure recovery. The distributed
characteristic of our architecture introduces many failure
points, but keeps the failure isolated from other processes.
What happens to a case if it is at a user's host that breaks
down? To deal with that, a requirement to the moving
protocol was defined: the case, when moving to the next
host, keeps a copy of itself in a stable storage on the
source host. If the destination host, where the case is
being executed breaks down, the case state at the previous
activity can be accessed by the case coordinator as soon
as the failure is detected, and another host/user is elected
to restart or continue the stopped activity, using the state
stored in a previous host. Furthermore, to avoid the
replication of previous states of the case throughout the
network hosts, the case coordinator may direct hosts to

transfer its old case state to a backup server, deleting its
data from these hosts.

In general, the "mobile agent" architecture is
augmented with components that hold a specific domain
information, like the case coordinator, role coordinator,
backup server and others. These servers or coordinators,
however, are not likely to be a bottleneck in the
performance of the system. The case coordinator, for
example, receives only very short notifications from the
"mobile agent", which mainly informs where the case is
moving to. On the other hand, the backup server may
receive large amounts of data, but this transfer can be
done asynchronously when network and server load
allows for it. The only standard server, in a client-server
sense, is the role coordinator which receives a query and
must return an answer for the processing to continue.
However, in this case, the amount of information
exchanged is small: a short query and the identity of a
user as answer. The information stored in the role
coordinator, in most cases, is also the product of small
notifications.

2.2. Main Components of the Architecture

We will now describe the WONDER components in
detail. The architecture is composed of a set of
autonomous distributed objects that together execute the
activities that compose the active cases. These objects are
described below.

2.2.1. Process Coordinator. The process coordinator is
the object that manages the description (template) of a
particular process. This object is responsible for the case
coordinator creation. Upon a request of a new office
supplies purchase, for instance, the "purchase of office
supplies" process coordinator will create a new case
coordinator for that order, instantiating and transferring
the plan to that object.

In case one needs to locate all instances of process, the
process coordinator also keeps track of all case
coordinators that it created and that are still active. For
example, if the definition of the process is changed, say to
introduce a new activity, the process coordinator will
propagate such changes to all its cases.

In order o achieve maximum distribution, the
coordinator for each process in the enterprise can be each
located at a different host, it can also be replicated among
various hosts. On the other extreme, in a more centralized
police, they can all be located at the same host. This
decision is outside the scope of our architecture and
should be based on the conflicting goals of maximum
resource (hosts) use or performance and management
considerations.

2.2.2. Case coordinator. The case coordinator centralizes
all information concerned with a particular case. It is
responsible for managing the activities of that case,
detecting failures and coordinating its recovery
procedures, performing the garbage collection of
activities and data, storing summary data in the history
server, answering to queries about the case, notifying the
process coordinator when a case is terminated, among
other things.

Similar to the process coordinator, each case
coordinator may be located on a different host, or many of
them can be executed at a single host, based on decisions
that balance performance and resource use.

The case coordinator is created by the process
coordinator, with a copy of the process plan. The case
coordinator creates a synchronization activity for each
and-join specified in the process definition, adding their
addresses (or names) to its plan.

2.2.3. Role Coordinator. The role coordinator is
responsible for the management of the users that can
perform a particular role and their state information. One
of such user state information is, for example, the number
of cases that the user is currently executing. With this
information, the "programmer" role coordinator can
answer queries like "Which is the least loaded
programmer?" or "Who are all the programmers
available?".

The role coordinator may also have access to the
History Server, which stores information about completed
cases, and to corporate databases. This information allows
the role coordinator to answer queries like: "Who is the
programmer with most experience in that kind of
system?" or "Who was the programmer that implemented
the previous version of that code?".

2.2.4. Synchronization activity. And-joins and Or-Joins
are a particular problem in "mobile agent" architectures.
The join must be defined before the case start by the case
coordinator otherwise, a "mobile agent" would not know
where to go when it needs to synchronize with other
"mobile agents" that executed in different branches of the
same plan. The synchronization activity will wait for all
notifications (and-join) or the first notification (or-join)
from its input activities before starting the following
activity. Once all "mobile agents" from its input activities
have moved to the synchronization activity (and-join), it
merges all case and application data, and composes a new
single "agent" that is moved to the host of the user that
will perform the and-join output activity. In an or-joint,
the first agent to arrive will produce a synchronization
activity output.

2.2.5. Task Lists. The user interface is implemented as a
task list, similar to a mailbox. This task list is controlled
by an object executing in the user’s host. The task list
notifies the user of new tasks that he/she is supposed to
execute or, if the allocation policy is one that offers
activities to all people that may execute it, the task list
allows the user to accept or reject the incoming task.
Furthermore, the task list is the user’s main interface to the
WFMS itself, so it should also allow for some
customizations such as selection of preferred external
applications (say a particular text processor), change of
the user’s preferential host, policies for sorting the
activities in the task list, and so on. It also collects
information about the user’s work load, which is useful for
the role coordinators.

2.2.6. History Server. The history server (or servers) is a
front-end for the repository of completed cases. When a
case coordinator finishes its work, all relevant data
concerned with the case is stored in the history repository.
Such procedure allows the cases to be audited and the
memory of the cases to be kept and further queried.

2.2.7. Backup Server. The backup server (or servers) is a
front-end for the repository of the intermediary state of
the active cases. As we mentioned above, the past state
information about a case is stored in some of the hosts
where the "mobile agent" have been before. Such user’s
host may not be trusted to hold the past state information
indefinitely, nor to be active when this information is
needed. The backup server executes in a more stable
machine to which a user host will transfer, under the
command of the case coordinator, the past state of the
case.

There may be many backup servers in the systems, one
per case, one for a group of cases, or even many for a
single case. The identity of the backup server and the
moment in which the backup will be performed is chosen
by the case coordinator based on many considerations
such as network and server loads. Once the backup is
made, the user host can erase the past state information of
that case.

2.2.8. Activity Manager. So far, we have been using the
idea of a "mobile agent" as an intuitive description of the
distributed nature of a case. However, the case is not
really implemented as a "mobile agent", but as data that is
transferred between two specific objects, the activity
manager instances located on both the source and the
destination hosts. There is no code mobility.

Each host that executes an activity has an activity
manager that "implements" our architecture. It receives a
new case for a specific user, activates the appropriate tool
(using the activity wrapper), waits until the user finishes

the activity and computes who should execute the next
activity (by interpreting the plan that came along with the
case and by querying the appropriate role coordinator). If
the next activity is to be performed by a user, the activity
manager sends the appropriate information to that user’s
task list, notifying the case coordinator that the activity
has ended and who is the selected user to perform the next
activity. After that, it transfers the case information to the
(next) activity manager. It also receives requests from the
case coordinator to transfer its case data to a backup
server.

2.2.9. Wrapper Activity. The wrapper activities are
objects that control the execution of a particular
application program. It invokes the application with initial
data or files and receives the application output files or
data. It is a bridge between specific applications and the
activity manager.

2.2.10. Gateway Activity. In order to cope with the
WFMC Interoperability requirement, the gateway activity
was defined. This component is responsible for bi-
directional workflow data, control and process definition
conversions between different WfMS. Thus, process
executing in different WfMSs can be used in our
architecture.

3. CORBA Implementation

The CORBA distribution environment [9] provides a
set of functionality and transparencies that improves the
distributed applications development. It implements an
object-oriented bus, providing access transparencies
(independence of hardware, language or operating
system) and location transparencies (independence of the
host where the object is executing). It offers benefits as
inheritance, information hiding, reusability,
polymorphism and other object-oriented features. It also
allows the use of legacy applications, developed for
different hardware and software platforms, through the
IDL language usage, defining a common communication
interface.

3.1. References to CORBA objects

The main problem using CORBA as the support
environment for the distributed workflow architecture is
its object reference. CORBA references as the standard
IORs (Interoperable Object References) are too transitory
for our application. These references contain information
such as the hostname, where the object is located, and a
port number that identifies the object in that machine.

Assuming that the completion of a case may take up to
many months, or even years, one cannot assume that
object will keep itself active, on the same port it was
created, during the case whole execution life. Since the
OMG CORBA specification still does not have an object
persistence service, we had to create our own persistent
CORBA object references. In our scheme, the objects are
locally stored (made persistent), and identified using the
following naming structure: (host, process, case, actor,
activity, file) for files; (host, process, case, actor, activity)
for activities; (host, process, case) for case coordinators;
(host, process) for process coordinators; (host, backup-
server) for backup servers, and so on. In order to provide
transparent object persistence, each host has a Local
Object Activator (LOA). The LOA executes as a daemon
and saves the object’s state in a local storage, the Object
Repository.

For example, the case coordinator for Joe's request for
the purchase of 500 paper clips (case C4375), of the

process "purchase of office supplies" (process P12), in the
host abc.def.com is identified by (abc.def.com, P12,
C4375). To access such object (or formally to bind to
such object), a process must send the reference (P12,
C4375) to the LOA in machine abc.def.com, and it will
instantiate and restore the state of that case coordinator,
based on the information stored in the object repository.
The LOA then returns the IOR of the newly restored
object to be immediately used.

The implementation uses many CORBA services. The
transference of the case information between two activity
managers uses the Transaction Service, so that the data
exchange is transactional, guarantee error-free.
Authentication of servers and clients, cryptography of the
data, and such can be implemented using the Security
Service in CORBA.

3.3. Hierarchy of Interfaces

������� ��� 	
 � ���

��� �� � � �
������� ��� 	
 � ���

��
 � �
������� ��� 	
 � ���

��� � � � � � � � � �

��� � � � � ��� � � � �
� ! � � "�� � � � � # � � � � �
$! � %�� � # ! & & '�! �
� ! � %�� � # ! & & '�! �

$! � ! # � %�� � # ! & & '�! �
(� & � %�� � # ! & & '�! �
�)� ! � � ! ��� & ! ��� � � *
(� & � ��� & ! ��� � � * &
� ! � ��� & ! ��� � � * + ! �

(� & � ,�# � � � � � ! &
� ! � ,�# � � � � � + ! �
�)� ! � � ! ,�# � � � � �
(� & � �)� � � ! � � ,�# � � � � � ! &
� ! � %�� � # ! & & ��� � � *
�-� � . � / ! ��� � � ! # �

' � � ��0 � 1 ! 2
3 4 5 6�3 7
8)9 4 : ;�: 4 7

$! � ��� � ! � & � �
� ! � ��� � ! � & � �
%�� & < ' � � �

$! � � � � � = !
$! � $ � � � � &
� ! � $ � � � � &
$�� � � �
$�� � 1
%�� � & !
> � � �
? � � � � � = !
� ! � "�� � !
$! � "�� � !
+ ! & ! �

@ � � � / ! � @ � � � / ! *

� ! � AB. C ! # � + ! �
(� & � (� # � � ,�# � � � � � ! &
(� & � (� # � � A�. C ! # � &
�)� ! � � ! (� # � � A�. C ! # �
> � � � AB. C ! # �
? � � � & � < "�� � � � � # � � � �

" ! D ,�# � � � � �
$! � ! # � ' � � �
� ! � ' � � �
+ ! � * ' � � � ��� � � � � � ! �
�)� ! � � !�(� # � � A�. C ! # �
��� � � � � �B� � � � �
? � � � & � < "�� � � � � # � � � �

,�# � � � � � �
A�. C ! # � "�� � !

,�# � � � � ! *

E AF� * ! � ! * G
+ ! # ! � ! �

$! � * ! �

H�I J K L M M

+ ! � * N ' � � �
O � � � ! N ' � � �

$�� � � ! &

+ ! � * &
P & $�� � � ! *

P & $�� � � ! *

$�� � � ! & ��� � � � � � ! *

��� � � � � � &

, # � � �

, # � ! *

A D � ! �
A D � ! *

@ � � � / ! �

@ � � � / ! *

+ ! / � & � ! �

+ ! / � & � � ! *

Q R S T T U R
V W X Y Z Y X [

\ [] W ^ _] Y ` S X Y _]
V)W X Y Z�Y X [

? � � # � � � � � � � � �

a b c d e f b g h i j k l m

n�b�o p�c q�r o q l m s b�r o�t t
p�c q�r o q l m s b�r q f h-i j k

u�o k�c

v b f k
n�b�b�c w�s r q m b�c

p�q o�d x�s o m

n�b o p�c q w�s r y�t t
p�c q w�s r y�h-i j k l m

x b l q f h-i j k l m
z)l m s { q m b�c

z�l m s {�s m |
}-q�r q y�k c

~�q m qFn�b�r m q�s r k�c

" ! D�' � � �
$! � N ' � � �
� ! � N ' � � �
? � � * ' � � �
+ ! ��� ! ' � � �

��� � � ��� � ��� �
��� ��� � � ��� �

�B� ! � � N ' � � � O � � � ! A�. C ! # �
+ ! � * A�. C ! # �

��� � � ��� �
����� � ���

�-� � � � �
����� � ���

O � � � ! A�. C ! # �
+ ! � * A�. C ! # �

� ! � ��� � � * � � � � � �
� ! � � & ! �

� � � ¡ � ¢

$! � 0 � 1 !
� ! � 0 � 1 !
� £ � ! � � $�� / � � �
� ! � ,�# � � � � � ! & (� & �
$! � ��� � * � � � � �
� ! � ��� � � * � � � � �
,�# � � � � � $�� / � � �

� ! � , 1 1 ' � � �
$! � , 1 1 ' � � �

,�* * ,�# � � � � �
+ ! ��� ! ,�# � � � � �
$�� / / ! & � ,�# � � � � �
$�� � � � ,�# � � � � �
> � � � ,�# � � � � �

"�� � !�¤ ¤ ��� & � � � !¥P *
� ! � " � � !
� ! � ¦�� � ! * � �
$! � ¦�� � ! * � �
� ! � ��� � � � /
$! � ��� � � � /

+ ! / � & � ! � � & ! �
��� � ! / � & � ! � � & ! �
(� & � � & ! � &
(� & � +�� � !
(� & � +�� � ! � & ! � &
�B� ! � �¥+�� � !
�B� ! � �F�)� � � ! � � �

+ ! � * N ' � � �
O � � � ! N ' � � �

§�¨ © ª « ¬�
®�¯ ° ± ¯ °

O � � � ! A�. C ! # �
+ ! � * A�. C ! # �
" ! D A�. C ! # �
$! � N ��� � � � /
� ! � N ��� � � � /
,�* * N�¦�� & �
+�� ! ��� ! N�¦�� & �

��� � � * � � � � � �

��� � � * � � � � ! *

+ � � !

? � � # � � � � � � � � �

Figure 1. Interface hierarchy using Rumbaugh OMT methodology.3.2. Other CORBA services

We describe in Figure 1 the main aspects of the
mapping between the components of the architecture and

the CORBA environment, representing the hierarchy of
IDL interfaces, according to the OMT methodology [13].

Gray rectangles represent inherited CORBA Object
Services interfaces.

The interface hierarchy described in Figure 1 is
composed of three interface groups (superclasses):
Repository Front-Ends, Coordinator and Activity
interfaces. Repository Front-Ends represents interfaces
implemented by objects that manages data repositories.
There are four kinds of data repositories: Backup,
History, Objects and Process. Coordinators manage the
execution of other system objects. There are Case and
Process coordinators. Process Coordinators, through the
multiple inheritance mechanism, are still used to control
Process Definition data repositories. Activities are objects
that control the task execution. They are managed by Case
Coordinators, activating applications (Wrapper Activity),
implementing synchronization points (Synchronization
Activity) and allowing the interconnection among
different WfMS (Gateway Activities). All the three
groups, along with the Role Coordinator, are sub-
interfaces of the Workflow Object. The Role Coordinator
manages dynamic and history information concerned with
the system users (User Interface). It inherits the CORBA
Trading Service interface, allowing more sophisticated
queries to be accomplished. Each user has an associated
role. Workflow Objects are uniquely identified, being
able to be controlled, located and stored. Local Object
Activators are responsible for implementing the object
persistence. The Activity Manager implements the activity
sequencing and executing. All these interfaces inherit
characteristics from the CORBA Transaction Service,
allowing fail-safe data and messages interchange among
them. The object sequencing uses Data Containers which
stores data and process definitions. These containers are
exchanged among Activity Managers. Task Lists stores
information concerned with user allocated activities.

3.4. Execution Scenarios

In this section, some execution examples are presented.
They emphasize the main objects of the architecture,
showing the communication and relations among them.
For simplicity reasons, we will leave out of the
explanations and figures the interaction with the LOA and
Object Repository.

3.4.1. Activity Sequencing. Figure 2 shows a typical
example of activity sequencing. The wrapper activity 70,
when finished, makes the Activity Manager 34 start the
new activity creation process. The case coordinator 12,
executing in a different host, is notified during whole
sequencing procedure. The procedure starts with the role
coordinator query, selecting an actor to perform the next
activity, and sends a notification to the task list. If the
activity is accepted by the selected user, the sequencing

procedure starts. The activity manager 34 contacts the
activity manager 35 in the user’s host, and transfers all
necessary data, together with the process definition,
wrapped in a data container. Finally the wrapper activity
78 is created by the activity manager 35 and then started.

² ³ ´ µ
² ¶ ¶ · ¸ ¹ º ³ » ¶ · ¼ ½

¾�· ³ ¿ ¿ µ ·
À�Á » ¹ Â ¹ » Ã�Ä Å

¾�· ³ ¿ ¿ µ ·
À�Á » ¹ Â ¹ » Ã�Æ Ç Ç

¾�· ³ ¿ ¿ µ ·
À�Á » ¹ Â ¹ » Ã�Ä Ç

È ´ µ ·
É ³ ´ Ê�Ë ¹ ´ »

Ì ¶ Í µ
² ¶ ¶ · ¸ ¹ º ³ » ¶ · Î

Ï�Ð Ñ Ò Ó Ñ

Ï Ð Ñ Ò Ó Ñ
Ï Ð Ñ Ò Ó Ñ

Ô Ó Ò Ð Ó Ô Ó Ò Ð Ó

Ô Ó Ò Ð Ó

Ï�Ð Ñ Ò Ó Ñ Õ Ö × Ò Ø Ù�Ú Û Ñ × Ó

Ü Ý Ñ Þ Ó ß Ö Ó à á à × Ò Ó à Ö Þ

Ü Ý Ñ Þ Ó
ß Ö Ó à á à × Ò Ó à Ö Þ

â Ñ Ò ã ä Ò Ó Ò Ï Ö Þ Ó Ò à Þ Ñ Ð å æ Ð Ö × Ñ ç ç ä Ñ á à Þ à Ó à Ö Þ è Õ à Þ é ç Ò Þ ã ä Ò Ó Ò ê

ë�ì Ñ Ð í�â Ö Ø Ñ

î à Þ à ç ï
ß Ö Ó à á à × Ò Ó à Ö Þ

Ô ì ð ð Ñ ç Ó ñ × Ó à Ý à Ó í
Ô Ñ Ó Ï Ö Þ á à Ð ò�Ò Ó à Ö Þ

ó Þ Ó Ñ Ð Ò × Ó ç

Ô Ñ Ø Ñ × Ó ä Ò Ó Ò è ô Ñ Ó ä Ò Ó Ò

Later Activity

…

…

õ�ö ÷ ø ù ø ÷ ú
û�ü ý ü þ ÿ � � � �õ ö ÷ ø ù ø ÷ ú

û�ü ý ü þ ÿ � � �
õ ö ÷ ø ù ø ÷ ú
û�ü ý ü þ ÿ � � �

Figure 2. Activity Sequencing Temporal Diagram.

For performance reasons, only data necessary for the
created activity is transferred. The reminder data are
passed by reference, in order to be retrieved by
subsequent activities.

3.4.2. Case Creation. The case creation procedure,
shown in Figure 3, is started by a user request in the
process coordinator 6 interface, which reference was
previously obtained. This request results in the case
coordinator 65, the wrapper activity 234 and the
synchronization activity 345 creation, according to the
process definition description. The role coordinator 23 is
queried in order to get an actor satisfying the role of the
activity to be created. The activity state and data are
stored in the local object repository.

� � � � 	

� � � � � � � � � � �

� �
 	
� � � � � � � � � � � �

��� � � � 	 �
� � � � � ��� � �

� � � � � � � � � � � �
� � � � � ��� � �

 	 �
! �
 "$#
 �

% � & 	
� � � � � � � � � � � �

� � � � 	

' 	 (� � � �
% 	 � �
 � � � ���

) * + , - +

) * + , - +

) * + , - +

) * + , - +) , . +
) / / * 0 1 2 , - / *

3 + - 4 * / 5 + . .
6 + 7
3 - , * -

3 - , * -

3 - , * -

4 * / 5 + . .
6 + 7 1 2 1 - 1 / 2

) * + , - + 8 / 5 , 9
:$; < + 5 -

) * + , - + 8 / 5 , 9
:$; < + 5 -

) * + , - + 8 / 5 , 9 :$; < + 5 -

=$> + * ?�@ / 9 +
3 > A A + . - B 5 - 1 C 1 - ?

) / 2 7 1 * D , - 1 / 2

E F G H G I J K

E L M N O I P Q
R S T P U V P J W X W J S J K

Y 2 - + * , 5 - .

Z C + 2 -
[/ - 1 7 1 5 , - 1 / 2

Z C + 2 -
[/ - 1 7 1 5 , - 1 / 2

@ + , 0 6 , - ,) / 2 - , 1 2 + * \ 4 * / 5 + . . 6 + 7 1 2 1 - 1 / 2] 8 1 2 ^ . , 2 0 6 , - , _

` a b c d c b e
f$g h g i j k l m

` a b c d c b e
f g h g i j k n o

` a b c d c b e
f$g h g i j k l n

Figure 3. Case Creation.

3.4.4. Activities Synchronization. The synchronization
procedure of the activities 70 and 71 are described in
Figure 4. When finalized, each activity notifies the
synchronization activity 5. After the evaluation of the
programmed condition (and/or join), the wrapper activity
78 is created in the selected actor’s specified object
repository. The actor to perform the next activity is
dynamically determined by querying the role coordinator
4. The case coordinator 12 is notified during the whole
procedure.

p q r sp t t u v w x q y t u z {

|}u q ~ ~ s u� � y w � w y � � �

|}u q ~ ~ s u� � y w � w y � � � |�u q ~ ~ s u� � y w � w y � � z

� r s u� q r � � w r y� t � sp t t u v w x q y t u �

� � � � � � � � � � � �

� � � � � �

� � � � �

� � � � � �

� � � � �
� � � � �

� � � � � � � � � � � � � � � � �

� � � � � � �

¡ ¢ � � � £ � � � ¤ � � � � � � �

¡ ¢ � � � £ � � � ¤ � � � � � � �
¡ ¢ � � � £ � � � ¤ � � � � � � �

¡ ¢ � � �£ � � � ¤ � � � � � � �

¥ � � ¦ § � � � � � � � � � � � � ¨ © � � � � � � § � ¤ � � � � � � � ª � � � « � � � ¦ § � � � ¬

¥ � � ¦ § � � � � � � � � � � � � ¨ © � � � � � � § � ¤ � � � � � � � ª � � � « � � � ¦ § � � � ¬

¥ � � ¦ § � � � � � � � � � � � � ¨ © � � � � � � § � ¤ � � � � � � � ª � � � « � � � ¦ § � � � ¬

 ® � � ¯ ¥ � � �

� � � � � �£ � � � ¤ � � � � � � �

� � � � � � £ � � � ¤ � � � � � � �

� ® ° ° � � � ± � � � ¢ � � ¯
� � � � � � ¤ � � � � � � � �

² � � � � � � � �
³ ´ µ ¶ · ¸ µ ¹ º » ¼ ¹ ¸ µ½ ¶ ¼ ¹ ¾ ¹ ¼ ´ ¿½ ¶ ¼ ¹ ¾ ¹ ¼ ´À » µ » Á Â Ã Ä Å ½ ¶ ¼ ¹ ¾ ¹ ¼ ´À » µ » Á Â Ã Ä Ä

½ ¶ ¼ ¹ ¾ ¹ ¼ ´À » µ » Á Â Ã Ä Æ
½ ¶ ¼ ¹ ¾ ¹ ¼ ´À » µ » Á Â Ã Ä ¿

Figure 4. And Join Synchronization.

3.4.5. Case Finalization. The Figure 5 shows the
temporal diagram of a case finalization procedure. By the
end of each case, data stored in the object repositories and
in the backup servers are removed in a garbage collection
procedure, while synchronization activities are finalized.

An execution summary containing relevant data for
subsequent queries is stored in the history server 7. The
whole process is managed by the case coordinator 56.

Ç È É Ê
Ç$Ë Ë Ì Í Î Ï È Ð Ë Ì Ñ Ò

ÓÔÌ È Õ Õ Ê Ì
Ö�× Ð Î Ø Î Ð Ù�Ú Ñ

Û Ü Ý Þ ß Ý

à ß Þ Ü ß

à Ý ß á â Þ ß Þ
ã Þ Ü ä Þ å Ý Û æ ç ç Ý è ß é ê ë Ý æ Ü ì æ Ü Ý í è ß î ï î ß ð ñ Ý ò æ ó î ß æ Ü î Ý ó ô

õ ï Ý ë ß ö æ ß î ÷ î è Þ ß î æ ë

ø î ë î ó ù
ö æ ß î ÷ î è Þ ß î æ ë

ú î ó ß æ Ü ð
â Þ ß Þ

û}ü ý þ ÿ � �
� � � ÿ ý ü þ ÿ � �

û ü ý þ ÿ � � � � � � � �
�

� � ÿ 	 � ý ý

$ÿ ÿ � � ü � þ ÿ � �

� � ÿ 	 � ý ý
� � � ü � ü þ ü ÿ �
� � � ÿ ý ü þ ÿ � ���

õ ï Ý ë ß ö æ ß î ÷ î è Þ ß î æ ë
ø î ë î ó ù�ö æ ß î ÷ î è Þ ß î æ ë

à Þ ì Ý ú æ ó ß

ø Ü æ ë ß � õ ë �� � � � � �
� � � � � � �

� � � � � !
" # $ # % � � & ' '

� � � � � !
" # $ # % � � & ('

�)� � � � !
"*# $ # % � � & & +

Figure 5. Temporal Diagram of a finalizing case.

3.4.6. Failure Recovery. The failure recovery process
consists of stopping the current process (current executing
activities), restoring the system to a previous stable state,
modifying its process definition adding compensation
activities and resuming the process by the end. The
process is managed by the case coordinator, using data
stored in the object repositories and backup servers spread
over the system.

4. Implementation Issues

The system is being developed in the Institute of
Computing at UNICAMP. It is being written in Java (Sun
JDK1.1), using the Iona OrbixWeb3.0, a CORBA
implementation written in Java. The local distributed
system is composed of Unix Workstations, NCD Diskless
X-terminals and Windows NT PC Workstations. All
computers are integrated by a Local Area Network.

The development process is concentrated, initially, in
the LOA and Activity Manager implementation.

The LOA is loaded by initialization scripts, just after
the orbixd (daemon that implements the ORB in the
OrbixWeb implementation) in the host operating system
of each workstation in the system. This object has an
infinite timeout, being configured to accept requests in
one predefined Port of the operating system. As all the
architecture objects are written in Java, their persistence
are implemented using the java.io.Serializable interface.
All the objects managed by the LOA are periodically

serialized and stored in their respective Object
Repositories.

5. Related Work

Some of the components of the Exotica project
[5,6,7,8], developed at IBM Almaden Research Center,
have similarities to our proposal. In particular the
Exotica/FMQM (Flowmark on Message Queue Manager)
architecture is a distributed model for workflows, using a
proprietary standard (MQI - Message Queue Interface) of
persistence queues. The case is a message that is stored in
these persistent queues, which are fault tolerant.
Nevertheless, the proposal is not very detailed on how to
deal with all the other requirements for a WfMS.

There are two OMG proposals for the Workflow
Management Facilities under consideration [10,11]. These
proposals are based on the WfMC standards and define a
set of basic objects and interfaces, without giving more
details about implementation or architecture. These
submissions uses the not yet implemented CORBA
facilities such as the Persistence and the Meta Object
Facilities.

The Mentor project [12] of the University of Saarland
aims at developing a scalable, traceable workflow
architecture. Fault tolerance is achieved by using TP-
Monitors and logs. CORBA is used as a communication
and integration support for heterogeneous commercial
components. Scalability is achieved by replicating the
data in backup servers. Similar to our architecture, the
data and reference to data are exchanged between Task
List Managers as the activities are being executed and
terminated. A limited first prototype was implemented
and future extensions should include support for dynamic
change of processes and the rollback of cancelled or
incomplete workflows.

6. Conclusions

In this paper, we have presented WONDER, a
distributed architecture for WfMS that satisfies all
important requirements of a workflow management
system including scalability and availability. The
architecture is based on the idea that the case moves from
user host to user host, following the process definition. A
set of coordinators and servers were added to the basic
architecture so that all other requirements for a WfMS
could be also contemplated.

The use of CORBA as the supporting environment for
such architecture has problems related to the persistence
of objects. The standard CORBA references may not
work in a domain in which objects representing activities
and cases can take months or even years to be

accomplished. A new form of referencing was proposed,
and it mediates the accesses to CORBA objects. With the
overcome of CORBA persistence problem, it seems to be
an appropriate platform for such applications.

Acknowledgments. The first three authors would like
to thank FAPESP (Process 98/06648-0) , CNPq, CAPES
(Process 027/98), and the Pronex - SAE project -
MCT/Finep for their support.

7. References

[1] "The Workflow Reference Model", Version 1.1, WfMC-TC-
1003, Nov. 1994
[2] "Terminology & Glossary", Version 2.0, , WfMC-TC-1011,
Jun. 1996.
[3] S. Jablonski, C. Bussler. Workflow Management - Modelling
Concepts, Architecture and Implementation. International
Thomson Computer Press, 1996.
[4] Alonso, D. Agrawal, A. El Abbadi, C. Mohan.
"Functionality and Limitations of Current Workflow
Management Systems". IBM Technical Report, IBM, 1997.
[5] Kamath, G. Alonso, R. Günthör, C. Mohan. "Providing High
Availability in Very Large Workflow Management Systems", In
Proceedings of the Fith International Conference on Extending
Database Technology (EDBT’96), Avignon, France, march 25-
29,1996.
[6] Alonso, D. Agrawal, A. El Abbadi, C. Mohan, R. Günthör,
M. Kamath. Exotica/FMDC: "A Persistent Message-Based
Architecture for Distributed Workflow Management",
Proceedings of the IFIP WG8.1 Working Conference on
Information Systems Development for Decentralized
Organizations, Trondheim, Norway, August, 1995.
[7] Mohan, G. Alonso, R. Günthör, M. Kamath, B. Reinwald.
"An Overview of the Exotica Research Project on Workflow
Management Systems", Proc 6th Int’l Workshop on High
Desempenho Transaction Systems, Asilomar, Set. 1995.
[8] Mohan, D. Agrawal, G. Alonso, A. El Abbadi, R. Güthör,
M. Kamath. "Exotica: A project on Advanced Transaction
Management and Workflow Systems", ACM SIGOIS Bulletin,
Vol. 16, No. 1, August, 1995.
[9] "The Common Object Request Broker: Architecture and
Specification" - OMG - Revision 2.0 July 1995.
[10] "OMG Business Object Domain Task Force BOTF-RFP 2
join Submission - jFlow. Workflow Management Facility,
revised submission". OMG, bom/98-03-04.
[11] Notel, "Workflow Management Facility Specification
Submission", OMG Supported by University of New Castle
upon Tyne, bom/98-03-01.
[12] Weissenfels, J., Wodtke D., Weikum G. e Dittrich A. K.-
"The Mentor Architecure for Enterprise-wide Workflow
Management", University of Saarland, Department of Computer
Science, 1997.
[13] Rumbaugh, J. Et. Al. - Object Oriented Modeling and
Design, Pretice Hall, 1991.

