
Striving for Versatility in Publish/Subscribe Infrastructures
Roberto S. Silva Filho

David F. Redmiles

Department of Informatics
Donald Bren School of Information and Computer Sciences

University of California, Irvine
Irvine, CA, USA 92697-3430

{rsilvafi, redmiles}@ics.uci.edu

ABSTRACT

Publish/subscribe infrastructures are used as the basic communi-
cation and integration framework in many application domains.
The majority of those infrastructures, however, fall short of me-
chanisms that allow their customization and configuration to
comply with the requirements of those application domains. In
other words, they are not versatile enough to support new and
evolving requirements demanded by different applications. The
YANCEES (Yet ANother Configurable Extensible Event Service)
addresses these versatility issues by relying on a combination of
plug-in oriented architecture and extensible languages decom-
posed over different design dimensions of a publish/subscribe
infrastructure. We demonstrate our approach, showing how the
YANCEES platform can be useful in reducing the customization,
extension and implementation effort of different publish/subscribe
infrastructures to attend the demands of many application do-
mains.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Domain Specific Architec-
tures; D.2.13 [Reusable Software]: Domain Engineering; H.4.3
[Communications Applications]: Information Browsers;

General Terms
Design

Keywords
Publish/Subscribe, notification servers, event-based middleware,
flexible architecture, plug-ins and extensible languages applica-
tion.

1. INTRODUCTION
Publish/subscribe infrastructures (a.k.a. Event Notification Ser-
vices) have been used as the basic communication and integration
infrastructure for many application domains such as user and
software monitoring [15], groupware [7], collaborative software

engineering [25], workflow management systems and mobile
applications [4], among many others. This wide range of applica-
tions has required new services from the publish/subscribe infra-
structure such as advanced event processing (event sequence de-
tection, abstraction, and summarization); event persistency, mo-
bility support, transactions, secure communication channels, and a
whole new set of domain-specific functionality. As a conse-
quence, in spite of the availability of standardized solutions such
as CORBA-NS (CORBA Notification Service) [22] or JMS (Java
Message Service) [29], new publish/subscribe infrastructures
continue to be developed to address the needs of novel applica-
tions.

In this context, the proliferation of specialized solutions reveals
limitations on the way event-based infrastructures are being de-
signed and built. First and foremost, the publish/subscribe para-
digm appears seductively simple. A basic service can be pro-
grammed quickly before the complexities of the application it
serves reveal themselves. Then, when complexities manifest, they
require significant extensions already implemented in existing,
sophisticated infrastructures. A second deterrent is that current
publish/subscribe infrastructures are not designed to be extensible
nor programmable, which hinders the addition or customization of
new application services. For instance, CORBA-NS does not
support event source discovery protocols, such as those provided
by CASSIUS [17]. The implementation of this feature using
CORBA-NS would require the direct change of this pub-
lish/subscribe infrastructure source code or even aspects of the
client application. Third, with rare exceptions such as the READY
[14] (a CORBA compliant notification service), current solutions
are not configurable with respect to the place where event
processing happens in a distributed setting, a feature important in
some application domains. For instance, some software monitor-
ing applications as EDEM [15], require the execution of event
processing on the application side, where the events are collected
and abstracted; whereas applications running on mobile devices
may need a restricted set of services and features. Forth, with the
proliferation of specialized infrastructures, interoperability be-
comes a problem. In large organizations, for the reasons previous-
ly mentioned, it is common to find different event-driven applica-
tions, designed for specific purposes, that rely on different event-
based infrastructures. Due to differences in purpose and scale,
they usually do not interoperate. For example, server monitoring
applications, e-mail servers, workflow management systems and
others, that do not share a common data format, data schema or
even computing platform. Finally, with the exception of a few
research prototypes, discussed at the related work section of this

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
SEM 2005, September 2005, Lisbon, Portugal
Copyright 2005 ACM, 1-59593-204-4/05/09 …$5.00.

paper, none of existing publish/subscribe infrastructures support
the customization and evolution of the services and features they
provide.

In this paper we present YANCEES (Yet ANother Extensible
Event Service), a new and experimental framework designed to
provide versatility to publish/subscribe infrastructures. YAN-
CEES’ goal is to support existing and new requirements de-
manded by current collaborative and software engineering appli-
cations, a field in constant evolution. YANCEES is based on the
key observations that publish/subscribe systems can have their
functionality decomposed over different design dimensions fol-
lowing a design framework that captures the main aspects of such
systems. YANCEES allows the customization, extension and
programming of such dimensions with the use of extensible lan-
guages and plug-ins [31]. It builds upon custom-made or existing
publish/subscribe infrastructures such as Elvin [12] and Siena [2],
allowing their extension with additional features. This strategy
results in an infrastructure that can be easily tailored to the needs
of different applications through the reuse of existing components
and notification servers.

1.1. Publish/subscribe design dimensions
In order to understand the concerns involved in the design of

a publish/subscribe infrastructure, Rosenblum and Wolf proposed
an analytical design framework described in [24]. In this frame-
work, the object model describes the components that receive
notifications (subscribers) and generate events (publishers). The
event model describes the representation and characteristics of the
events; the notification model is concerned with the way the
events are delivered to the subscribers; the observation model
describes the mechanisms used to express interest in occurrences
of events; the timing model is concerned with the casual and tem-
poral relations between the events; the resource model defines
where, in the distributed system architecture, the observation and
notification computations are located, as well as how they are
allocated and accounted; finally, the naming model is concerned
with the location of objects, events, and subscriptions in the sys-
tem. As proposed by Cugola et al. [4], we combine the naming
and observation models in the subscription model.

This design framework, however, does not consider addi-
tional services, other than the publication and subscription of
events. Current publish/subscribe infrastructures has demanded
support for different interaction protocols, as the example of mo-
bility [4], Internet-scale event notification systems [2], context-
aware applications [1], peer-to-peer networks [5], and the wide
use of publish/subscribe infrastructures in different application
domains. Hence, we build upon Rosenblum and Wolf’s frame-
work by introducing a new dimension to this model, the protocol.
The protocol model is necessary to capture other forms of interac-
tion with the publish/subscribe infrastructure that goes beyond the
common publication, routing and notification of events.

Finally, this design framework did not account for differenc-
es between interaction and infrastructure aspects of the pub-
lish/subscribe infrastructures. The interaction with the pub-
lish/subscribe system is generally not only mediated by simple
publish/subscribe programmatic APIs, but also through subscrip-
tion and notification languages. This dual characteristic (language
and APIs) makes the study of versatility in the context of pub-
lish/subscribe infrastructures a challenging endeavor, since one

must match the configuration, variability and evolution of the
infrastructure with the evolution and variability of these languag-
es.

2. VERSATILITY MOTIVATION
As observed by Parnas [23], the majority of software systems are
not designed for change and evolution. Instead, they are built to
solve specific and well defined problems which end up hindering
their ability to evolve, resulting in high maintenance and evolu-
tion costs. Publish/subscribe infrastructures are not an exception
to this observation. In the light of this problem, Parnas proposes
the concept of flexibility, which states that software must be de-
signed and implemented not as a single program, but as a family
of programs that can be extended and contracted according to
different application needs. Our notion of versatility is based on
this original definition of flexibility, and incorporates additional
design properties that are important to current publish/subscribe
infrastructures. Parnas’ observations, even though still current and
valid did not explicitly mention nor predict other kinds of con-
cerns such as runtime (dynamic) change, load balancing or distri-
bution of processing (between client or server sides for example),
and usability. The first two issues are central to distributed sys-
tems and publish/subscribe middleware, whereas the latter is es-
sential for the acceptability and usefulness of the proposed ap-
proaches. Based on this motivation, we proceed to present our
concept of versatility.

In the light of the above discussion, we proceeded to research
ways of providing and maintaining good software engineering
qualities that allows the customization, expansion and contraction
of publish/subscribe infrastructures in a usable way. For such, we
adopted the term, versatility. Moreover, we sought a new term
that could be applied not only to technical needs but to the vary-
ing needs of human stakeholders and application workplace set-
tings. Hence, from a software engineering perspective, and more
specifically in the context of publish/subscribe infrastructures,
versatility comprises the following requirements.

Evolution Support allows the publish/subscribe service to incor-
porate changes due to new (functional and non-functional) appli-
cation-level requirements. Evolution is accomplished by support
for extensibility, programmability and reuse. Extensibility en-
compasses all classes of enhancements that can be made in the
system without changing the existing functionality (or contract),
for example, the addition of new functional behavior, such as
advanced event processing, which adds to the current subscription
language, while maintains backward compatibility with existing
publish/subscribe API. Programmability allows the customiza-
tion and modification of the behavior of existing software. For
example, the reconfiguration of the publish/subscribe infrastruc-
ture to support different event representations (such as records,
objects, or tuples), or the built of new subscription language,
based on regular expression queries and different event delivery
mechanisms. Programmability can also be used to define new
federation and interaction protocols with the notification service.
Reuse allows the modularization of certain aspects of software,
permitting the incorporation of existing functionality, wrapped as
special software pieces (or components), in the construction of
new software [18]. For example, existing subscription filtering
functions can be reused in the implementation of more advanced
filtering and event processing commands.

Variability (or scalability) allows the contraction and expansion
of software in order to support different functional and non-
functional requirement sets. For example, allowing the built of
thin pub/sub infrastructures to run in hardware restricted devices,
or more complex systems, to run in fast server machines; as well
as the ability to distribute event processing over client or server
sides.

Usability. In order to be useful, and fulfill its purpose, software
must be usable [21]. The cost associated to learning, and using a
customizable and extensible piece of software must not exceed
the total cost of building an application-specific infrastructure
from scratch.

Besides the above qualities of versatility, publish/subscribe infra-
structures need to support the essential middleware requirements
of scalability, interoperability, heterogeneity, network communi-
cation and coordination [10] which must co-exist with the versa-
tility properties we propose.

3. APPROACH
Our approach strives to provide the versatility properties dis-
cussed in the last section. It is based on the combination of plug-
in and extensible languages in the implementation of new pub-
lish/subscribe infrastructures that better meet existing and new
application requirements.

Plug-in based software development can be defined as a special
case of component-based software development which supports
the evolution and customization of the features of the application
by the use of plug-ins [31]. A well known example is the Eclipse
IDE1 which can be extended with new software tools. Plug-ins
rely on configuration management provided by the system run-
time environment (or kernel), rather than the user, allowing grace-
ful upgrading of systems over time without requiring application
restart [3, 20]. The runtime environment manages: (1) plug-in
runtime activation and deactivation; (2) plug-in registry, a list of
installed plug-ins; and (3) inter-plug-in dependencies manage-
ment. Optionally, the kernel can support other services such as
logging, security, and so on. For such characteristics, plug-ins
have been used in applications demanding modularization and
footprint control, extensibility, as well as runtime change and
upgrade.

Another emerging approach to versatility that has been used in
different application domains, is the combination of extensible
languages such as XML (the Extensible Markup Language), and
plug-in based software development [31]. This combined ap-
proach is usually motivated by the need to cope with different
languages, tailored at different application domains that share a
common infrastructure. While language extensions allow the ex-
pression of domain-specific concerns, plug-ins are used to imple-
ment this functionality in the underlying infrastructure.

Together, the use of extensible languages and plug-in oriented
software development is particularly attractive to pub-
lish/subscribe infrastructures domain since they combine the ex-
tensibility of languages such as XML with the runtime change
and dynamic characteristics of plug-ins. The extensible languages
also can be syntactically and semantically parsed at runtime, pre-

1 http://www.eclipse.org

venting inconsistent combinations of plug-ins to take place, thus
avoiding the definition of conflicting plug-in configurations.
YANCEES demonstrates the application of those techniques to
the publish/subscribe versatility problem as described in the next
session. A general overview of the approach is presented in Fig-
ure 1 as follows.

plug-ins, filters
and adapters

existing pub/sub
infrastructures

configuration
manager

notification, event and
subscription languages

(XMLSchema)

domain-specific
YANCEES
instance

YANCEES core architecture
description

Figure 1. YANCEES general approach summary

3.1 YANCEES architecture overview
The YANCEES framework was designed based on the key ob-

servation that (1) the design dimensions of a publish/subscribe
system represent variability points where different combinations
of functionality can be plugged; (2) and that the required functio-
nality subset is governed by composition rules expressed in the
form of subscription and notification languages. YANCEES
makes these extension points explicit, allowing their extension
and programming through the combined use of extensible lan-
guages and plug-ins. Those extensions are wrapped up into confi-
gurations, allowing the fine-tuning of the infrastructure according
to different application requirements. The whole process is auto-
mated by the use of dynamic message parsers and configuration
managers. A general picture of the YANCEES framework is
shown in Figure 2.

Client stub

Server implementation

Pub/sub core

Subscriber

Publisher

Client stub

Subscriber
Subscriber

plug-in

plug-inplug-in
Client stub

plug-in

extensible subscription,
notification, and protocol

models using XML
and plug-ins (including
filters and protocols)

extensible
event model

Publisher

Client stub

Support for multiple
cores: different MOMs,
pub/sub infrastructures
(as Elvin, Siena, JMS) or
custom implementations

plug-in

filter

plug-in plug-in

filter

filter

prot

filterfilter
configurable

resource model with
client side plug-ins

and filters

Extensible subscription
and notification

languages

Client stub

prot

Figure 2. General view of the YANCEES framework.

In YANCEES plug-ins can be defined to perform event correla-
tion (sequence detection, aggregation, abstraction and so on),
notification policies (such as push and pull), and protocols (mo-
bile primitives such as move-in/move-out). Plug-ins can be either
installed in the server side or in the client side (publishers or sub-
scribers), allowing the distribution of event processing functional-
ity among these sites. The publish/subscribe core can integrate
custom or existing publish/subscribe infrastructures such as Elvin
and Siena.

3.2 Main YANCEES Components
Internally, YANCEES is programmed by the dynamic composi-
tion of different kinds of components used to augment existing or
new publish/subscribe cores. Those components are defined ac-

cording to four main categories: subscription and notification
plug-ins, protocol plug-ins, filters and adapters. They implement
or manipulate three kinds of extensible languages: event, sub-
scription and notification.

Subscription and notification
plug-ins

Abstractor plug-in:
- Evaluate pre-condition
- Execute operation
- Notify listeners

Provided Interface

Required Interface

other plug-ins...

notify(event[])

other plug-ins...

addListener()
removeListener()

notifyListeners(event[])

Co
nt

ro
l I

nt
er

fa
ce

Filters

other filters...

Filter:
- Evaluate pre-condition
- Apply filter
- Forward filtered events

Input Interface

Output InterfaceaddSuccessorr()
removeSuccessor()

forwardEvent(event)

other filters...

filterEvent(event)
Co

nt
ro

l I
nt

er
fa

ce

Protocol plug-ins

other filters and
plug-ins...

Protocol plug-in:
-Respond to requests
-Access notificaton
service internals

Required Interface

Protocol API

pub/sub infrastrcuture
clients...

protocol API call
and responses

access server
internals

Adapters

existing MOMs...

Adapter:
-Translate intenal
pub/sub model to native
MOM representations

“native” Interface

Adapter API

pub/sub infrastrcuture
clients...

publish()
subscribe()

publish()
subscribe()

notify()

notify()

Figure 3. Kinds of plug-ins supported in the YANCEES platform

Subscription and notification plug-ins are used to program and
extend the notification and subscription models. As described in
Figure 3, they are responsible for implementing specific com-
mand sets in the subscription and notification languages respec-
tively. They implement the listener pattern [13], a simple pub-
lish/subscribe model that allow their dynamic composition into
event processing hierarchies (or threes). Using this approach,
plug-ins can be composed to perform advanced event processing
operations. For instance, plug-ins such as event sequence detec-
tion can depend on other plug-ins that perform content-based
filtering with the help of the pub/sub core.

Filters (second column of Figure 3) are used to select or restrict
specific events from an event stream. Hence, they are used to
extend the event model or to perform filtering in the subscription
and notification models. For example, they can be used to eva-
luate content-based event expressions, apply security policies
throughout the system, enforce event type checking (thus extend-
ing the event model), invoke operations in other plug-ins in re-
sponse to some special and many other operations. Filters are
basically composed in sequence, according to the chain of respon-
sibility design pattern [13].

Protocol plug-ins (third column of Figure 3) allow the extension
and programming of the infrastructure to support new protocols.
They are dynamically loaded components that can be used to
implement different interaction protocols with the server. They
have access to the internals of the infrastructure and can interact
with other plug-ins. Example of protocol plug-ins include mobili-
ty protocols (move-in, move-out primitives implementation), user
authentication, and event source discovery as supported by CAS-
SIUS notification server. Protocol plug-ins can also be configured
as static plug-ins (a.k.a. services) that, instead of being activated
over demand, persist over many activations. An example of a
static plug-in is an internal data model or JDBC connection.

Adapters (forth column of Figure 3) allow the integration, exten-
sion and programming of the event model and cope with interope-

rability. They translate the internal YANCEES event representa-
tion to different, core-specific event models. They also provide a
standard publish/subscribe interface. Combined those features
allow the system to interact with existing publish/subscribe infra-
structures such as message-oriented middleware as JMS, or noti-
fication servers as Siena and Elvin, or to implement new routing
algorithms. For example, YANCEES can be configured with one
or more pub/sub cores, connected by different adapters, in order
to extend existing systems with advanced event processing fea-
tures, or as a way to integrate different publish/subscribe net-
works.

Configuration managers and dynamic parsers. Those compo-
nents manage the variability of the system. Whereas adapters,
protocol plug-ins and filters are statically combined following
user-defined configurations, interpreted by YANCEES configura-
tion manager; subscription and notification plug-ins are loaded at
runtime, by dynamic parsers, as the users express their interest in
events by posting subscriptions. More details on those particular
components and their algorithms are provided elsewhere [28].

3.3 Implementation
The YANCEES prototype is composed of four main sub-parts: (1)
the extensible framework itself, which provides automated sub-
scription, notification and event parsing; as well as configuration
management; (2) a set of generalized publish subscribe adapters,
plug-ins and filters, (3) the subscription, notification and event
languages, and (4) existing or custom-made pub/sub cores (see
Figure 1).

The framework was implemented in Java 1.4 and the Java API for
XML Processing (JAXP), which supports XMLSchema that pro-
vides inheritance and extensibility mechanisms used to define the
subscription, notification languages, as well as different event
representations. It also allows subscriptions, events and notifica-
tion languages to be validated and grammatically checked, pre-
venting inconsistencies and misuses of the language. In our cur-

rent prototype the communication between clients (publishers and
subscribers) and the YANCEES service is performed by using
Java RMI.

The framework provides a generalized implementation of the
publish/subscribe model, externalizing methods such as PUB-
LISH, SUBSCRIBE and UNSBSCRIBE to the end users. These
methods operate over generic types that encapsulate XML mes-
sages representing subscriptions, notifications and events. Proto-
cols are handled by the special CONNECT_TO_PROTOCOL
method in the YANCEES API, which returns a remote reference
to a specific plug-in. Preliminary tests show an additional over-
head around 100ms in the subscription time (a consequence of
XML technology), and an extra 50ms in the event routing if com-
pared to Elvin [12] and Siena [2] alone (all measured on a 3GHz
Pentium IV). The YANCEES event routing, however, is opti-
mized, yielding a top throughput of 10000 events/second that, in
our tests, was superior to Elvin and Siena, when events are sent in
a high frequency [27]. This apparently conflicting result is a con-
sequence of the buffering strategy of YANCEES, that minimizes
traffic between publishers and subscribers by grouping and send-
ing more than one notification at once (instead of one message per
notification). This strategy is transparent to the users. It is also
important to mention that those delays are compatible with the
software engineering and groupware applications we are currently
supporting. The programmatic interface has more functions than
described here. However, space limitations prohibit us from dis-
cussing them all.

YANCEES supports both distributed and centralized configura-
tions. When using Elvin and Siena, for example, it inherits their
ability to support Internet-scale publish/subscribe networks. If
necessary, different federation protocols can be implemented in
the infrastructure, with the help of protocol plug-ins. An example
of tool that uses a special YANCEES configuration for peer-to-
peer applications is discussed elsewhere [6].

We have implemented subscription plug-ins that provide event
correlation (event sequence detection) (257 LOC) as well as top-
ic-based event routing (268 LOC) and content-based event filter-
ing based on Elvin and Siena pub/sub cores (3000 LOC). Plug-ins
that support push and pull notification policies were also imple-
mented (50 LOC); as well as protocol plug-ins that support the
polling of events (200 LOC). Additional plug-ins for event persis-
tency and CASSIUS-like event hierarchy management are pro-
vided (1100 LOC), as well as loggers and type checking filters.
Some of those plug-ins are discussed in the case studies presented
in the next section. More plug-ins are being developed. YAN-
CEES is available for download in the website2.

4. CASE STUDIES
In this section we present two evaluation case studies, showing
how YANCEES design dimensions can be configured to support
different application requirements. For the lack of space, we focus
on describing the main plug-ins and their configurations, used in
each case. A more detailed description on how to extend YAN-
CEES from a programmer’s perspective is described elsewhere
[27]. In order to illustrate our approach, we assume YANCEES is
initially configured with a simple content-based subscription

2 http://www.isr.uci.edu/projects/yancees

model, based on tuple-based event model and push notifications
similar to those provided by Siena [2] or Elvin [12].

4.1 Evaluation Case Study 1: Extending and configuring
YANCEES to support awareness applications

In this case study, we extend the framework to provide the main
services required by awareness applications. The requirements of
this domain are based on the set of functionalities provided by
notification servers such as Khronika [19] and CASSIUS [17].
Hence, in order to be functionality-compatible with those notifica-
tion servers, YANCEES needs to provide: event persistency and
typing, event sequence detection, and pull notification delivery
policy. Moreover, a special feature provided by CASSIUS is the
ability to browse and later subscribe to the event types that are
published by each event source. This feature, called event source
browsing, provides information about the publishers and their
events, and requires an API for event source registering and
browsing. A summary of the extensions implemented in YAN-
CEES is presented in Figure 4. For simplicity, other components
such as parsers, factories and so on are not represented.

Subscribers

Publishers

adapter

content-based core

pull

filter filter

sequence

persistency

hierarchy
browser

poll
protocol

type chk

authentication
protocol

CASSIUS
model JDBC
connector

Static plug-in
(or service)

Subscription
plug-ins

Notification
plug-ins

Input filters

Protocol interaction
and notifications

Event source
registry
protocol

events

Protocol
messages

Figure 4. YANCEES configuration implementing CASSIUS-

equivalent functionality.

Subscription model. An important feature in awareness applica-
tions is event sequence detection. In order to support this feature,
the original subscription language is extended with a new key-
word: <sequence>, which depends on the existing <filter> com-
mand that performs content-based filtering. In other words,
grammatically, a sequence detector operates over a set of two or
more filter commands. A sequence detection plug-in is then im-
plemented and registered in the system. It operates over a set of
content-based plug-in filters (which are assumed to be already
available), that interact with a content-based publish/subscribe
core, already installed in the YANCEES framework. Note that we
assume that the content-based core (in this case Siena or Elvin)
provide event ordering guarantees.

Notification and protocol models. The Pull notification delivery
policy requires subscribers to periodically poll (or inquire) the
server for new events matching their subscriptions. For such,
messages need to be stored in the server side. In the YANCEES
architecture, this mechanism is provided by a combination of
notification and protocol model extensions. First, in the notifica-
tion model, the <pull> language extension is defined; then a pull
plug-in is implemented. Instead of sending the notifications di-

rectly to the subscribers, the pull plug-in stores the events in a
temporary repository, implemented as a JDBC connector static
plug-in. In order to allow end users to collect the persistent
events, a poll protocol plug-in is also defined.

Event model. Finally, the event model also needs to be extended
to support event typing. This is necessary since the existing
pub/sub core performs content-based filtering and uses generic
tuple-based events. CASSIUS events are marked with a special
attribute indicating its type. In YANCEES, this functionality is
implemented by a type checking input filter. Whenever this filter
detects this special attribute, the event attribute names and types
are checked for correctness, according to the CASSIUS template
format.

Protocol model. Finally, the browsing of event sources in CAS-
SIUS allows publishers to register events in a hierarchy based on
accounts and objects. This model and the API required to operate
the server are described elsewhere [17]. In the YANCEES frame-
work, the CASSIUS functionality is implemented by the use of a
persistency filter, the hierarchy browser, event source registry and
authentication protocol plug-ins, which interact with the JDBC
connector that intermediates the creation and management of
objects, accounts, and their events. These operations include re-
gistering/un-registering accounts, objects, and events, as well as
polling commands.

4.2 Evaluation Case Study 2: Extending and configuring
YANCEES to support a security visualization application

In this section, we present some of our experience in using YAN-
CEES to achieve most of the requirements presented in section 2.
(We are still researching appropriate criteria for usability). In this
case study, we demonstrate YANCEES extensibility, configura-
bility, interoperability and reuse in an application monitoring
scenario. In this scenario, an enhanced version of Vavoom soft-
ware visualization tool [8] was extended to use YANCEES as the
basic communication infrastructure. Vavoom is a visual java vir-
tual machine that allows the monitoring and visualization of java
programs executions. The visualizations are based on runtime
program execution events such as object creation, method invoca-
tions, variable changes and so on. Vavoom was extended to pro-
vide a security visualization tool that displays information about
the network activity of monitored applications.

topic
filter

Subscribers

Publishers

adapter

topic-based core

YANCEES server side

adapter

content-based core

Adapter pool

push

filter filter

sequence
Dynamically loaded

subscription plug-ins,
according to the desired

subscription mode

Dual core redirector:
allows the co-existence of

different event and
subscription models

notifications

events

Figure 5. YANCEES configuration in supporting the security

visualization scenario.

In this application, YANCEES plays two roles: In one hand, it is
used to route events to program visualizations that display the
current execution of the application. This requires fast routing of
events and no content-based filtering; On the other hand, it also
needs to provide content-based event filtering and sequence de-
tection capabilities for a network activity visualization that dis-
plays and monitors the activity of current socket connections the
application may open. The Vavoom class loader produces Java
bytecode-level events with information, including object creation
and destruction, method invocation and exceptions. This informa-
tion, even though sufficient for Vavoom program visualizations,
is insufficient for the security visualization tool. The visualization
uses network-related information such as method invocations,
with certain parameters, in a certain order. Hence these low-level
events, produced by the class loader, must be filtered, combined
and generalized to provide higher-level network activity informa-
tion to the security visualization. A summary of the extensions
and the YANCEES configuration for this application is presented
in Figure 5.

Extensibility. The scenario demanded two different qualities of
service from YANCEES: fast switching of events to be used by
the real-time visualizations and content-based filtering with se-
quence detection, to be used by the security visualization. This
former requirement is fulfilled in YANCEES by the use of a top-
ic-based dispatcher developed for this scenario (268 LOC). The
second requirement was provided by correlation language exten-
sions, with their respective plug-ins (257 LOC), which provided
different sorts of event sequence detection that operated over
timing and event order constraints. The implementation of the
correlation plug-ins was facilitated by the reuse of filtering plug-
ins and their language extensions that were already implemented
in the system at that time. This allowed the implementation to
focus on detecting sequences, and not on filtering.

Configurability. For this specific software monitoring scenario,
both dispatchers (content-based and topic-based), with their re-
spective plug-ins were installed together in the same configura-
tion. They operate at the same time, being dynamically selected
based on the subscription originated from both kinds of visualiza-
tions: the security visualization and the application visualization.

Interoperability. In the initial state of our prototype, for perfor-
mance reasons, Elvin was used as the event dispatcher component
of YANCEES. Later on, with the implementation of the fast
switch router dispatcher component, Elvin could be completely
replaced. This was accomplished with no further change in the
visualizations. This demonstrates the ability of YANCEES to
integrate different event notification services. In other words,
from the interoperability point of view, YANCEES provides an
abstraction layer that operates over different notification servers,
which are wrapped as event dispatcher components in the YAN-
CEES framework. This indirection layer makes the change in the
underlying infrastructure to be transparent to the client applica-
tions. Moreover, using this approach, allows events published
using Elvin native API to be visible to YANCEES and vice versa.

Reuse. This scenario also illustrates the reuse of current solutions:
for example, the reuse of content-based filtering capabilities
(plug-ins and subscription language extensions) already provided
by YANCEES; and the reuse of existing content-based routers, as
Elvin and Siena.

5. RELATED WORK
The idea of modularizing and customizing different aspects of a
publish/subscribe infrastructure is present in other systems at
different degrees. Existing infrastructures however, are domain-
specific versatile, limiting their flexibility to the exact amount
demanded by the application domain they are designed to support,
thus focusing on a subset of the design dimensions proposed in
section 1.1.

The Modular Event System [11], for example, focuses on event
transformations and interoperability, which is achieved by the
modularization of publish/subscribe concerns in terms of compo-
nents called scopes that can be statically composed to implement
different infrastructure functionalities and policies under a stan-
dardized publish/subscribe API. Current implementation is based
on Siena, and borrows from it its event model. There is no support
for dynamic variability and for protocols. The subscription lan-
guage is also fixed.

In another example, Shen and Sun propose a flexible notification
framework (or FNF for short) [26] that support different require-
ments of collaborative applications. This is accomplished by the
use of programmable message queues, where different ingoing
and ongoing notification mechanisms can be installed. It allows
the manipulation of incoming and outgoing event queues by con-
trolling their event granularity and event forwarding frequency. It
also allows the definitions of transformations of notifications (or
events), for the implementation of application-specific concurren-
cy control mechanisms. The FNF event model is topic-based; the
tool is tailored for synchronous event-based groupware communi-
cation and the programming of the system is preformed by ma-
nually composing the message queues. There are no explicit sub-
scription or notification languages.

FULCRUM [1] is a publish/subscribe system designed to support
context-aware applications. It applies an open implementation
strategy, allowing the programming of different context-aware
queries involving real-world aspects such as device (publishers
and subscribers) physical distances. FULCRUM focus on sub-
scription extensibility and programmability, and do not allow the
configuration and programming of other aspects of the infrastruc-
ture.

The ADEES (Adaptable and Extensible Event Service) [30] is a
client-side framework that allows the definition of different sub-
scription and notification strategies. It supports different sets of
notification and subscription operations, expressed in a meta-
model (language). Operations are implemented by different com-
ponents which can be composed to perform different transforma-
tions over the events. The infrastructure is implemented as an
event processing layer on top of CORBA-NS. It provides a certain
degree of client-side extensibility, programmability and configu-
rability of the subscription and notification languages. However,
other aspects of the publish/subscribe infrastructure such as serv-
er-side extensibility and configurability, support for different
pub/sub cores, event models and protocols are not addressed.

FACET [16] is an extensible and configurable implementation of
the CORBA Event Service. The extensibility and configurability
of features are implemented using Aspect Oriented Programming
[9], which allows the weaving of different features in the middle-
ware. It was initially designed to provide specific configurations
that can run on restricted conditions of embedded systems, and

can support the real-time requirements of specific applications.
The use of Aspects as the only way to compose both functional
and nonfunctional features demands mechanisms for consistency
checking. The model is too tight to the CORBA-ES standard,
borrowing from it its subscription, notification and event models.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we presented YANCEES, an infrastructure for de-
veloping application-specific publish/subscribe infrastructures.
YANCEES achieves this goal through the combined use of ex-
tensible languages and plug-in oriented software development,
strategically layered upon the main design dimensions of a pub-
lish/subscribe infrastructure. This approach provides configurabil-
ity, programmability, extensibility and reuse of both plug-ins and
existing publish/subscribe infrastructures.

Theoretically, we show that publish/subscribe infrastructures can
be decomposed in sets of components that follow an extended
version of the Rosenblum and Wolf [24] design framework. This
extended version makes explicit the interaction and infrastructure
aspect of each dimension, and supports a new protocol dimension
that captures interactions with the publish/subscribe system other
than the common publication and subscription of events. Practi-
cally, we show how these dimensions can be extended by the
dynamic combination of plug-ins, filters, adapters and extensible
languages by describing two use cases where YANCEES was
used to provide application-specific functionality. These two con-
tributions combined provide a novel approach to cope with the
versatility demanded by different applications.

The use of a single extensible infrastructure has many benefits. It
provides a common model with which customized pub-
lish/subscribe infrastructures can be build. This model also allows
the extension of existing publish/subscribe infrastructures, coping
with interoperability. Moreover, it improves the reuse of existing
components, speeding up the development of new solutions.

These benefits come through a price. As in any framework, its
initial construction demands some effort in generalization and
domain analysis; after that, a learning curve exists in order to
understand its concepts and extension points. Another cost is as-
sociated to performance overhead. Preliminary performance tests
with our prototype of the framework showed an increase in the
routing latency of the events [27]. This delay in performance,
however, is compensated by the gain in configurability and exten-
sibility, and is amortized by the high-throughput and multithread
support provided in the current prototype implementation.

The use of XML as subscription and event representation provide
extensibility to those dimensions. However, form the point of
view of the end user, the interaction with the system through the
use of XML can be cumbersome. Hence, improvements in the
user interface with the system are necessary and will be provided
in future versions of our prototype. In particular, we are exploring
the use of graphical subscription editors and automatic configura-
tion generators to facilitate the configuration and use of the sys-
tem.

The implementation of crosscutting functionality such as security
is still not completely addressed in the framework. The YAN-
CEES platform, however, provides a testbed where different ap-
proaches for the implementation of non-functional requirements

can be tested and further exploited. In special, we are studying the
use of Aspect-Oriented Programming, in addressing those issues.

7. ACKNOWLEDGEMENTS
This research was supported by the U.S. National Science Foun-
dation under grant numbers 0205724 and 0326105, and by the
Intel Corporation

8. REFERENCES
1. Boyer, R.T. and Griswold, W.G. Fulcrum – An Open-
Implementation Approach to Context-Aware Publish/Subscribe,
UCSD, San Diego, 2004.
2. Carzaniga, A., Rosenblum, D.S. and Wolf, A.L. Design and
Evaluation of a Wide-Area Event Notification Service. ACM
Transactions on Computer Systems, 19 (3). 332-383.
3. Chatley, R., Eisenbach, S. and Magee, J. Painless Plugins.
Technical Report - http://www.doc.ic.ac.uk/~rbc/writings/pp.pdf,
Imperial College London, London, 2003.
4. Cugola, G., Nitto, E.D. and Fuggetta, A. The Jedi Event-
Based Infrastructure and Its Application on the Development of
the OPSS WFMS. IEEE Transactions on Software Engineering,
27 (9). 827-849.
5. DePaula, R., Ding, X., Dourish, P., Nies, K., Pillet, B., Red-
miles, D., Ren, J., Rode, J. and Silva Filho, R. In the Eye of the
Beholder: A Visualization-based Approach to Information System
Security. To appear in The International Journal of Human-
Computer Studies (IJHCS) Special Issue on HCI Research in
Privacy and Security.
6. DePaula, R., Ding, X., Dourish, P., Nies, K., Pillet, B., Red-
miles, D., Ren, J., Rode, J. and Silva Filho, R., Two Experiences
Designing for Effective Security. in Symposium On Usable Priva-
cy and Security (SOUPS 2005), (Pittsburgh, PA, 2005).
7. Dourish, P. and Bly, S., Portholes: Supporting Distributed
Awareness in a Collaborative Work Group. in ACM Conference
on Human Factors in Computing Systems (CHI '92), (Monterey,
California, USA, 1992), ACM Press, 541-547.
8. Dourish, P. and Byttner, J., A Visual Virtual Machine for Java
Programs: Exploration and Early Experiences. in ICDMS Work-
shop on Visual Computing, (Redwood City, CA, 2002).
9. Elrad, T., Filman, R.E. and Bader, A. Aspect-oriented pro-
gramming: Introduction. Communications of the ACM, 44 (10).
29-32.
10. Emmerich, W. Software Engineering and Middleware: A
Roadmap. in Finkelstein, A. ed. The Future of Software Engineer-
ing, ACM Press, 2000.
11. Fiege, L., Mühl, G., C., F. and Gärtner Modular event-based
systems. The Knowledge Engineering Review, 17 (4). 359 - 388.
12. Fitzpatrick, G., Mansfield, T., Arnold, D., Phelps, T., Segall,
B. and Kaplan, S., Instrumenting and Augmenting the Workaday
World with a Generic Notification Service called Elvin. in Euro-
pean Conference on Computer Supported Cooperative Work
(ECSCW '99), (Copenhagen, Denmark, 1999), Kluwer, 431-451.
13. Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design
Patterns: Elements of Reusable Object-Oriented Software. Addi-
son-Wesley Publishing Company, 1995.
14. Gruber, R.E., Krishnamurthy, B. and Panagos, E., The Archi-
tecture of the READY Event Notification Service. in ICDCS

Workshop on Electronic Commerce and Web-Based Applications,
(Austin, TX, USA, 1999).
15. Hilbert, D. and Redmiles, D., An Approach to Large-scale
Collection of Application Usage Data over the Internet. in 20th
International Conference on Software Engineering (ICSE '98),
(Kyoto, Japan, 1998), IEEE Computer Society Press, 136-145.
16. Hunleth, F. and Cytron, R.K., Footprint and feature manage-
ment using aspect-oriented programming techniques. in Joint
Conference on Languages, Compilers and Tools for Embeded
Systems, (Berlin, Germany, 2002), ACM Press, 38-45.
17. Kantor, M. and Redmiles, D., Creating an Infrastructure for
Ubiquitous Awareness. in Eighth IFIP TC 13 Conference on Hu-
man-Computer Interaction (INTERACT 2001), (Tokyo, Japan,
2001), 431-438.
18. Krueger, C.W. Software Reuse. ACM Computing Surveys, 24
(3). 131-184.
19. Lövstrand, L., Being Selectively Aware with the Khronika
System. in European Conference on Computer Supported Coop-
erative Work (ECSCW '91), (Amsterdam, The Netherlands, 1991).
20. Mayer, J., Melzer, I. and Schweiggert, F. Lightweight Plug-
In-Based Application Development. in M. Aksit, M.M., R. Un-
land ed. Lecture Notes in Computer Science, Springer-Verlag
Heidelberg, 2003, 87 - 102.
21. Nielsen, J. What is Usability? in Nielsen, J. ed. Usability En-
gineering (Chapter 2), Morgan Kaufman, 1993, 23-48.
22. OMG. Notification Service Specification v1.0.1, Object Man-
agement Group, 2002.
23. Parnas, D.L., Designing software for ease of extension and
contraction. in 3rd international conference on Software engi-
neering, (Atlanta, Georgia, USA, 1978), IEEE Press, 264 - 277.
24. Rosenblum, D.S. and Wolf, A.L., A Design Framework for
Internet-Scale Event Observation and Notification. in 6th Euro-
pean Software Engineering Conference/5th ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering, (Zurich,
Switzerland, 1997), Springer-Verlag, 344-360.
25. Sarma, A., Noroozi, Z. and van der Hoek, A., Palantír: Rais-
ing Awareness among Configuration Management Workspaces. in
Twenty-fifth International Conference on Software Engineering,
(Portland, Oregon, 2003), 444-453.
26. Shen, H. and Sun, C., Flexible notification for collaborative
systems. in ACM conference on Computer supported cooperative
work (CSCW'02), (New Orleans, Louisiana, USA, 2002), ACM,
77-86.
27. Silva Filho, R.S., De Souza, C.R.B. and Redmiles, D.F. De-
sign and Experiments with YANCEES, a Versatile Publish-
Subscribe Service - TR-UCI-ISR-04-1, University of California,
Irvine, Irvine, CA, 2004.
28. Silva Filho, R.S., de Souza, C.R.B. and Redmiles, D.F., The
Design of a Configurable, Extensible and Dynamic Notification
Service. in International Workshop on Distributed Event Systems
(DEBS'03), (San Diego, CA, 2003), 1-8.
29. SUN. Java Message Service API, SUN, 2003.
30. Vargas-Solar, G. and Collet, C., ADEES: An Adaptable and
Extensible Event Based Infrastructure. in 13th International Con-
ference, DEXA 2002 Aix-en-Provence, (2002).
31. Wilson, G.V. Extensible programming for the 21st century
ACM Queue, 2004, 48-57.

