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Abstract 
Software patterns express a generic solution for a spe-
cific design problem, conveying some knowledge and 
expertise from designers. Model checking is an automatic 
technique for verifying finite state systems that deter-
mines if a property holds of the given finite state machine. 
The paper describes the experience of the authors in 
modeling three concurrency design patterns using the 
Bandera toolset for model checking. The concurrency 
properties of these patterns were specified using the 
BASL language and submitted for checking after the re-
laxation of the code. Due to some problems related to the 
immaturity of the tool, only one model could be checked, 
in one special property. The main contribution of the pa-
per is the formalization of the patterns and the sequence 
of steps followed in order to formalize and check these 
patterns. 
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1. Introduction 
 
Software patterns [Gamma94] facilitate reuse of 

well-established solutions to known problems. Although 
there are several different ways of presenting a pattern, 
there is an agreement in the community that a pattern 
description must include, at least its name, description, 
problem and the solution proposed. Therefore, when a 
designer identifies the same problem, he can apply the 
correspondent pattern to that problem and easily solve it. 

There are several levels of abstraction for a software 
pattern [BMRSS96]: in an implementation level, they are 
called idioms; in a design level, design patterns; and fi-
nally if a higher-level of abstraction is used, they are 
called architectural patterns. In our work, we are dealing 
specifically with design patterns, therefore, in the rest of 
the paper patterns and design patterns will be assumed as 
synonyms. 

It is also a common practice to present the informa-
tion about the advantages of using a pattern. This helps 
the designer in the process of choosing a design pattern, 
when there are more than one of them available to solve 
the same problem. These advantages are usually written 
by the pattern developer and are based on his experience. 
In some cases, before being published the patterns are 
discussed in conferences by experts who evaluate the 
pattern, i.e., these experts try to validate them. However, 
this process is completely informal, it does not use any 
kind of formal method or tool in order to validate those 
advantages. Of course, this process is error-prone and 
suggests that some kind of formal approach must be used. 
This paper addresses this issue. 

We present a formal specification of the properties of 
three concurrency design patterns implemented in Java. 
The analysis was performed using a Java source code 
model checker tool called Bandera [CDH+00]. Three 
different design patters were implemented and submitted 
for checking by this tool. These implementations had to 
be modified due to problems in Bandera’s parser. We 
were not completely successful in checking all patterns 
because of bugs in the tool such as this parser problem. 

We specified some properties using the specification 
language provided by the tool in order to validate the 
concurrency control features which the pattern claimed to 
address. In this case, we used an approach for checking 
properties called model checking. Model checking is an 
automatic technique for verifying finite state systems that 
determines if a property holds in a finite state machine 
(Chapter 1) [CGP99]. This finite state machine is auto-
matically generated by Bandera, based on the source file 
presented to this tool. During the checking, an exhaustive 
search is done in the states to check if the property holds 
at every state.  

 
1.1. Paper Description 
 

The paper is organized as follows. Section 2 presents 
the motivation to our work. The next section, briefly dis-
cusses the concept of design patterns, as well as presents 
the three design patterns that are checked. Section 4 pre-
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sents the Bandera model checker toolset. Then, section 5 
presents the annotations that were inserted in each pattern 
with the tests that we developed to check the satisfaction 
of these conditions. Section 6 summarizes our results and 
our experience using Bandera. Finally, some conclusions 
are presented. 

 

2. Motivation 
 
Software patterns express a generic solution for a 

specific design problem, conveying some of the knowl-
edge and expertise from designers. These patterns are 
abstracted in a way that other designers can reuse. 

Design patterns, such as that provided by 
[Gamma94] are typically presented and documented us-
ing textual descriptions and problem motivations. It also 
uses object-oriented diagrams (class and sequence), and 
an implementation in a specific programming language, 
using a simple problem example. This approach has been 
successfully applied in other books and conferences. In 
fact, there are several conferences and workshops de-
voted to patterns. 

The approach presented in this paper addresses this 
issue. We argue that validating design patterns using 
some kind of formal method could help the adoption of 
patterns, providing a way to check their reliability and 
correctness. By validating, we mean checking if the pat-
terns provide the features that they claim. For example, 
does the Read/Write Lock [Grand98] pattern guarantee 
mutual exclusion? Since nowadays there are thousands of 
patterns, can one trust that a pattern provides all advan-
tages described in their specification? These questions are 
addressed in this paper through the formalization of three 
concurrent design patterns. By formalizing, we mean the 
process of mathematically verifying properties of these 
patterns. Using this approach, the knowledge that is ex-
pressed in a design pattern can be validated, i.e., we avoid 
the problem of someone defining a pattern that does not 
provide the advantages claimed. 

In order to validate design patterns, we suggest the 
following approach: 
 
1. First, the patterns to be checked must be identified. 

In our case, we selected a small (three) number of 
concurrency patterns proposed by [Grand98] in his 
book.  

2. The properties to be checked are identified. Since we 
are interested in checking concurrency patterns, the 
most important properties identified were deadlock 
freedom and mutual exclusion. 

3. Then, according with these properties, the adequate 
formal method is selected. We selected a model 
checking approach to validate the patterns because it 

provides support for checking deadlock-freedom as 
well as other runtime properties of the system. 

4. Now, a specific tool supporting the method should be 
selected. In our case, Bandera [CDH+00] was chosen 
because of it provides support for Java programs 
checking using annotations in Java code. 

5. Usually, the tools used in model checking have some 
specific input language, such as SPIN’s Promela for-
mal language. Therefore, the patterns must be speci-
fied in this language. Since Bandera uses Java source 
code as its input, this step should not be necessary. 
We discuss it in more details in section 4.  

6. Finally, the properties to be checked are specified 
according to the tool selected. Bandera has a lan-
guage called BSL (Bandera Specification Language) 
which supports different constructs such as pre and 
post conditions, invariant expression definition, 
predicate evaluation and so on. These annotations are 
provided in the Java code to be analyzed as JavaDoc 
notes. 
 
Of course, this sequence of steps is not mandatory, 

i.e., it is just a recommendation. It can be modified to 
accommodate other objectives. For example, the selection 
of Bandera influenced our decisions in the opposite way: 
we wanted to test the Bandera toolset, therefore we se-
lected concurrency patterns previously implemented in 
Java. 

 

3. Design Patterns: History, Definition and 
Java concurrency Patterns 
 
Design Patterns are design solutions adapted in the 

resolution of frequent problems in the software develop-
ment phase. In the following sections, we present a brief 
history of design patterns, the concepts that comprise 
their use and documentation, and we describe the patters 
used in the project. 
 
3.1. Brief History of Design Patterns 

 
Software patterns have their origin in the ideas pub-

lished in 1977 and 1979 by Christopher Alexander in the 
field of architecture patterns for urban planning [Alexan-
der79]. In his work, the design rationales of common 
design solutions were presented in a structured way. In 
1987, Ward Cunnigham and Kent Beck verified that the 
approach of documentation and reuse of ideas, presented 
in this work, could be applied in the Software Engineer-
ing field. In 1987, Ward Cunnigham and Kent Beck de-
scribed five patters for user interface design. Such ideas 
were based on the initial work of Christopher Alexander. 
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(OOPSLA-87 – “Using Pattern Languages for Object-
Oriented Programs”).  

In 1994, the book Design Patterns by Reich Gamma, 
Richard Helm, John Vlissides and Ralph Johnson 
[Gamma94], also known as "Gang of Four", popularized 
the concept of software design pattern. 

In 1998 the book “Patterns in Java”, by Mark Grand 
[Grand98], was published. It releases as an evolution to 
the "Gang of Four" book. The book presents several pat-
terns, many of them not present in the Gamma’s book. In 
this book, the UML notation is used to describe the gen-
eral solutions and the design patterns. The examples are 
coded and described using the Java programming lan-
guage. 

 
3.2. Concepts 

 
According to Alexander [Alexander79], "A Pattern 

could be defined as a three part rule that expresses a rela-
tion between a certain context, a problem and a solution".  

Design patterns represent reusable structures and 
concepts, applied during the design phase of Software 
Engineering process. They improve the software devel-
opment by presenting generic solutions that provide flexi-
bility and understanding that facilitate future extensions 
to the software. 

Design patterns present many advantages as follows. 
 

1. They improve reuse and generality. Experienced 
developers can use recurring and generic solutions, 
instead of implementing a proprietary and not so ge-
neric solution each time it is necessary. 

2. They provide a common vocabulary to developers. 
Design patterns allow the collaboration of develop-
ers, which can use these patterns to exchange knowl-
edge and discuss problems in terms of well-known 
patterns, in a higher abstraction level. 

3. They improve the design documentation. A project 
can be expressed in a higher level, using patterns that 
are well known by the developers, instead of using a 
proprietary code and practice. 

4. They allow the expert programmers to represent their 
knowledge in a reusable and more documented way, 
creating a medium to teach good practice design to 
novice developers. 
 
The use of design patterns is supported by the ex-

perience and knowledge of the developers, which should 
be able to understand and specify systems using this ap-
proach. This approach, however, can be difficult to use in 
environments in which this practice is not so widespread. 
It also requires an additional effort from the programmers 
to document, use and keep these patterns.  

Design patterns can vary according to the granularity 

and its abstraction level. Their classification, according to 
some criteria, makes it easy to understand, document and 
be identified. In this work, we used some of the Concur-
rency Design patterns described in the Mark Grand's 
book.  

 
3.3. Concurrency Design Patterns 

 
These patterns present generic solutions to frequent 

concurrency problems found in concurrent and distrib-
uted systems. They focus on two kinds of problems, the 
sharing of resources, focusing on the deadlock manage-
ment, and the concurrent execution of operations. These 
operations must follow a correct sequence of operations, 
for example, the insertion of a data element in a data 
structure should happen before its removal. These are the 
patterns described in the Book: (1) Single Threaded Exe-
cution, (2) Guarded Suspension, (3) Balking, (4) Sched-
uler, (5) Read/Write Lock, (6) Producer-Consumer, and 
(7) Two-Phase Termination. 

We selected three of these patters. They were the 
Single-Threaded Execution, Read/Write Lock and Pro-
ducer-Consumer. These patters are described in the fol-
lowing subsections. 

3.3.1. Single Threaded Execution [Grand 98] 

 
This design pattern describes a solution for the con-

currency control problem in the case of multiple readers 
and multiple writers to a single resource. It prevents prob-
lems that may occur when concurrent callers invoke an 
operation and both calls access the shared resource at the 
same time. The most common problems in this situation 
are lost updates and inconsistent reads. 

3.3.2. Context 

 
Consider a system that monitors the flow of cars in a 

highway. Sensors in each lane of the highway monitor the 
passage of cars, sending this information to a local con-
troller. This controller is attached to a transmitter that 
periodically sends the total information to a central com-
puter. The class diagram of this system is presented in 
Figure 1 below. 
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Figure 1 Single Threaded Execution - Traffic sensor 
classes. 

 
Instances of the TrafficSensor class represent the 

sensors in the lanes. Each time a car is detected, a sensor 
calls the vehiclePassed() operation in the TrafficObserver 
interface. A TrafficTransmitter instance collects the num-
ber of vehicles passed in a road periodically. It does this 
operation, calling the getAndClearCount() operation in 
the TrafficSensorControler interface. 

 
Concurrency situations: 
 
A lost update may occur when two TrafficSensor in-

stances call the vehiclePassed() operation in a TrafficSen-
sor controller instance at the same time. In this case, the 
vehicleCount can be incremented only once, instead of 
two times. 

Race conditions may occur when both a Traffic-
Transmitter and a TrafficSensor instances try to access 
the vehicleCount variable at the same time. This access is 
indirectly provided by the vehiclePassed() and getAnd-
ClearCount() operations. The final value of this counter 
depends on the order of the execution of these two con-
current events. If the TrafficTransmitter executes first, the 
vehicleCount is set to zero and the operation invoked by 
the TrafficSensor changes the vehicleCount value to its 
previous value plus one, instead of the current value 
(zero), to one.  

To avoid these two problems, the operations vehiv-
lePassed() and getAndClearCount() are guarded with the 
synchronized modifier, which ensure that only one proc-

ess can invoke one operation at a given time. 
 

3.3.3. Consequences 

 
Guarding methods can reduce the performance of the 

application, since threads have to wait for other ones in 
order to reach the shared resource; 

The use of guarded methods makes the application 
thread-safe; 

The use of guards in methods can enable the oppor-
tunity to threads become deadlocked  

 

3.3.4. Code Examples 

 
The following code snippet describes the main points 

of the implementation of the Figure 1example, specially 
the use of synchronized modifiers in the operations. 

 
/** 
* This method is called when a traffic 
* sensor detects a passing vehicle. 
* It increments the vehicle count by one. 
*/ 
public synchronized void vehiclePassed() { 

vehicleCount++; 
} // vehiclePassed() 
 
/** 
* Set the vehicle count to 0. 
* @return the previous vehicle count. 
*/ 
public synchronized int getAndClearCount() 
{ 

int count = vehicleCount; 
vehicleCount = 0; 
return count; 

} // getAndClearCount() 

 
 

3.4. Read/Write Lock [Lea 97] 
 
This design pattern implements a solution for the 

concurrent control problem existing when multiple access 
to read() and write() operations, in an shared object, are 
performed concurrently. It implements a read/write lock 
acquisition protocol that enable multiple concurrent read 
calls whenever a write operation is not being performed. 
During a write operation, the writer must have exclusive 
access to the variable being modified. No simultaneous 
reads or writes are allowed during this operation. 

 

3.4.1. Context 
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Consider a piece of software that controls electronic 
auctions. Items are put up for auction. People participate 
in the auction observing the bid values for each item. 
They also contribute with their own bids for some items. 
In a given moment, the auction of an item will close. In 
this example, there are many people reading bids from the 
items, but only one person can make a bid at a time.  

The use of the Single Threaded Execution Desing 
Pattern [Grand98] solve the concurrency problem de-
scribed above, but does not allow the multiple read of the 
bids at the same time. In this situation, the Read/Write 
Lock design pattern allows the single execution of the 
write operations allowing, however, the concurrent read 
of the data. The exchange of the messages in this scenario 
is described in Figure 2 below. 

 
 : UserInterface

 : Bid

 : ReadWriteLock

B.2:done()A.2:done()

A:getBid() B:setBid()

A.1:readLock() B.1:writeLock()

 

Figure 2 ReadWriteLock Object Diagram. 

 
The setBid() operation modifies the current bid and 

prevents the getBid() operation to read inconsistent data. 
This operation waits for the return of the last getBid() or 
setBid() operations, before modifying the current bid 
value. The getBid() operation can be invoked at any time, 
as soon as the setBid() operation is not being executed. 

The Read/Write Lock design pattern encapsulates the 
concurrency control described above, together with the 
lock acquisition and relinquishment protocol, assuring 
concurrent reads and exclusive writes. 

The readLock() operation returns immediately, 
unless there is a writeLock() operation being executed, or 
waiting to be executed. The writeLock() operation signal-
izes the start of a reading cycle, and goes to a waiting 
state If: there is another writeLock() operation executing 
at this moment, or if there is a readLock() operation in 
execution. 

The done() operation relinquishes a read or a write 
lock. This operation is invoked whenever the acquired 
locks are not necessary anymore. 

 

3.4.2. Consequences: 

 
The Read/Write Lock design pattern increases the 

concurrency of the reading operations and achieves mu-
tual exclusion. It also allows the reuse of the concurrency 
control logic, increasing the concurrency whenever there 
are more read than write operations. However, this pat-
tern does not perform well when the number of write op-
erations is bigger than the number of read operations. For 
this last case, the use of the Single Threaded Execution 
pattern is recommended. 

 

3.4.3. Solution: 

 
The generic pattern for the concurrent read write 

problem is depicted in the Figure 3 below. 
 

Data

+getAttribute1()
+getAttribute2()
+...()

ReadWriteLock

+readLock()
+writeLock()
+done()

uses

1

1

 

Figure 3 ReadWiteLock Pattern 

 
The set and get operations call the operations write-

Lock() and readLock() of a ReadWriteLock object before 
getting access to the shared resource. This invocation is 
performed using delegation. The done operation is called 
at the end of this operation. For each object of type Data, 
there is an associated object from type ReadWriteLock  

 

3.4.4. Code Example: 

 
The following code snippet describes the main points 

of the implementation of the Figure 2 example. 
 

public class Bid { 
    private int bid = 0; 
    private ReadWriteLock lockManager = 

 new ReadWriteLock(); 
 
public int getBid() throws 



6 

 InterruptedException{ 
    lockManager.readLock(); 
    int bid = this.bid; 
    lockManager.done(); 
    return bid; 
} // getBid() 
 
public void setBid(int bid) throws 

 InterruptedException { 
    lockManager.writeLock(); 
    if (bid > this.bid) { 
        this.bid = bid; 
} // if 
     lockManager.done(); 
} // setBid(int) 
} //class 

 
public class ReadWriteLock { 
    private int waitingForReadLock = 0; 
    private int outstandingReadLocks = 0; 
 
    private Thread writeLockedThread; 
    private ArrayList waitingForWriteLock = 
           new ArrayList(); 
 
    synchronized public void readLock() 
throws InterruptedException { 
    waitingForReadLock++; 
    while (writeLockedThread != null) { 
        wait(); 
    } // while 
    waitingForReadLock--; 
    outstandingReadLocks++; 
} // readLock() 
 
public void writeLock() throws 
      InterruptedException { 
    Thread thisThread; 
    synchronized (this) { 
        if (writeLockedThread==null && out-
standingReadLocks==0) { 
            writeLockedThread = 
Thread.currentThread(); 
            return; 
        } // if 
        thisThread = 
Thread.currentThread(); 
        waitingForWrite-
Lock.add(thisThread); 
    } // synchronized(this) 
    synchronized (thisThread) { 
        while (thisThread != writeLock-
edThread) { 
            thisThread.wait(); 
        } // while 
    } // synchronized (thisThread) 
    synchronized (this) { 
        int i = waitingForWrite-
Lock.indexOf(thisThread); 
        waitingForWriteLock.remove(i); 
    } // synchronized (this) 
} // writeLock 
 
synchronized public void done() { 
    if (outstandingReadLocks > 0) { 

        outstandingReadLocks--; 
        if ( outstandingReadLocks==0 
             && waitingForWrite-
Lock.size()>0) { 
            writeLockedThread = 
(Thread)waitingForWriteLock.get(0); 
            writeLockedThread.notifyAll(); 
        } // if 
    } else if (Thread.currentThread() == 
writeLockedThread) { 
        if ( outstandingReadLocks==0 
             && waitingForWrite-
Lock.size()>0) { 
            writeLockedThread = 
(Thread)waitingForWriteLock.get(0); 
            writeLockedThread.notifyAll(); 
       } else { 
            writeLockedThread = null; 
            if (waitingForReadLock > 0) 
              notifyAll(); 
       } // if 
    } else { 
        throw new IllegalStateExcep-
tion("Thread does not have lock"); 
    } // if 
} // done() 
} // class ReadWriteLock 

 
3.5. Producer-Consumer 

 
This design pattern coordinates the concurrent pro-

duction and consumption of information among producer 
and consumer objects. 

3.5.1. Context 

 
Consider a trouble ticket (bug) dispatching system 

scenario. Consumers submit trouble tickets through web 
pages. Dispatchers review this information and forward 
the tickets to the appropriate person in the organization. 

Tickets stay in a queue until dispatchers read them. 
Dispatchers read the queue periodically. If the queue is 
empty, the dispatchers wait until the first message comes 
in. 

The system is represented in the Figure 4 below. 
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TroubleTicket

Queue

-arraySize: int =  100
-currentPosition: int =  0

«create» Queue()
-add()
-remove()
+push()
+pull()
+size()

Client

«create» Client()
+run()

Dispatcher

«create» Dispatcher()
+run()

-data

-queue

-queue

 

Figure 4 Producer-Consumer classes - Trouble Ticket 
example 

 
Instances of client (the producer), asynchronously 

supply objects (TroubleTicket instances) to the queue. 
Asynchronous consumers (dispatchers) read these objects 
from the queue whenever they are available. The queue 
detaches the producers and the consumers, allowing their 
asynchronous indirect communication. 

 

3.5.2. Consequences 

 
Producer objects are detached from the consumer ob-

jects. They produce objects to a queue without the neces-
sity to wait for the consumers response or availability; 

When there are objects in the queue, the consumer 
can pull the objects immediately, if the queue is empty, 
the pull call waits until a new object is pushed by the pro-
ducer. 

 

3.5.3. Code Example 

 
The concurrent access to the pull operation is con-

trolled using a synchronized modifier in this operation.  
Below, the main parts of the code are presented. This 

code is based on the example of the Figure 4. 
 

 
public class Queue { 

    private ArrayList data = new Array-
List(); 
 
synchronized public void push(TroubleTicket 
tkt) { 
    data.add(tkt); 
    notify(); 
} // push(TroubleTicket) 
 
synchronized public TroubleTicket pull() { 
    while (data.size() == 0){ 
        try { 
            wait(); 
        } catch (InterruptedException e) { 
        } // try/catch 
    } // while 
    TroubleTicket tkt = (Trou-
bleTicket)data.get(0); 
    data.remove(0); 
    return tkt; 
} // pull() 
 

 

4. The Bandera Toolset 
 
Bandera [CDH+00] is a toolkit for model checking 

Java programs. Model checking is an automatic technique 
for verifying finite state systems that determines if a 
property holds of the given finite state machine (Chapter 
1) [CGP99]. In this technique, an exhaustive search is 
done in the model states to check if the property holds at 
every state.  

Model checking, has been showed to be a successful 
technology for verifying hardware [WF95]. In fact, hard-
ware manufacturers frequently use them to validate their 
designs. Furthermore, it can also be used in software sys-
tems. In the literature we can find papers describing the 
checking of: cache coherence protocols used in dis-
tributed file systems [WF95], electronic commerce proto-
cols [HTWW96], and so on. 

The Bandera toolset allows users to check static and 
dynamic properties in Java programs, allowing the tailor-
ing of the analysis to a select set of properties in order to 
minimize analysis time. The Bandera architecture has the 
following main features:  

- It reuses existing technologies as the model 
checkers;  

- It Provides automated support for the abstrac-
tions used by experienced model designers; and  

- Provides an open design, which can be extended 
according to future needs. 

 
4.1. Bandera Architecture 

 
In general, one can say that the Bandera architecture 

is similar to an optimized compiler: the input is translated 
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into intermediate representations, which are augmented 
with useful information. Bandera uses Java source code 
as input that is translated into a Jimple program. This 
program is sliced and abstracted and translated into an-
other intermediate representation called BIR (Bandera 
Intermediate Representation). Finally, this BIR code is 
used to generate a program in the language of one of the 
three model checkers currently supported. For example, it 
generates output in Promela formal language if the model 
checker selected is the SPIN [Hol97] checker. In fact, 

Bandera was built on top of the Soot compiler framework 
[CDH+00]. 

Figure 5 presents the Bandera architecture. The main 
components of Bandera architecture are the Slicer, the 
Abstraction Engine, the Back End and the User Interface. 
Each one of these components is briefly described as fol-
lows. More information regarding these components are 
presented in the references [CDH+00], [DHR+01] and 
[PDW01]. 

 

 

Figure 5: The Bandera Arquitecture 

 

4.1.1. Slicer 

 
The Slicer component is responsible for removing ir-

relevant source code for the checking of a given property. 
The slicing criteria are automatically extracted from the 
observable predicates that reference variables and predi-
cates in the predicate being analyzed.  

 
The process of slicing is based on the calculation of 

the dependency graph, which supports visualization of 
data, control and synchronization dependencies. This 
dependency graph also helps the process of selecting ab-
stractions. Since all variables in the dependency graph are 
important to the property being checked, this information 
can be used to select the variables that appear most often 
in a checked predicate in order to simplify the checking. 

 

4.1.2. Abstraction Engine 

 
The Abstraction Engine copes with the reduction of 

the cardinality of data sets associated with variables. For 
example, if the property being verified depends only on 
whether or not a particular item is in the vector, instead of 

using a large number of vector states, we could use 
{ItemInVector, ItemNotInVector}[CDH+00].  

Bandera provides a powerful specification language 
called Bandera Abstraction Specification Language 
(BASL) which can be used to create abstractions. How-
ever, the abstractions must be safe, i.e., they must over-
approximate the set of true executable behavior of the 
system checked [DHR+01]. In order to guarantee this 
safeness a formal check must be performed. This check-
ing is not a trivial process, therefore most Bandera’s users 
can select abstractions from the Abstraction Library pro-
vided by this tool. Therefore, Bandera can be used by 
non-experts because it provides abstractions reuse.  

The Abstraction Engine supports type inference in 
order to check conflicting abstractions [DHR+01]. For 
example, if a program with an assignment like “y = z;” 
and with “z abstracted with {Neg, Zero, Pos}” and “y is 
abstracted with {Even, Odd}” were checked, it would 
raise an error. The problem is that if z is a Pos value, it 
can not be determined if z is Even or Odd. In a case like 
that, Bandera reports the conflict to the user who can ad-
just the abstractions chosen. 

It is important to note that slicing and abstractions 
are important because they reduce the total number of 
states to be checked helping to minimize the “state explo-
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sion problem”. The idea is that as the number of system 
components grows the size of a finite-state model in-
creases exponentially. This is one of worst problem in 
applying model checking and it is much more difficult 
when model checking is applied to software systems, 
because these systems tend to have much more states than 
hardware components [CDH+00]. 
 

4.1.3. The Back End 

 
At this point, an abstract Jimple program that was 

sliced and abstracted replaced the Java source code. This 
program will be used as input to the BIRC (Bandera In-
termediate Representation Constructor) which creates a 
BIR representation of this program. BIR is a command-
guarded language for describing state transition systems 
which also that abstracts the common model checker in-
put language. This output is sent to model checkers spe-
cific translators. For example, the SPIN Translator ac-
cepts a BIR representation and produces a Promela model 
of the system.  

Finally, the program is executed in the model 
checker and if a counter-example is found it is translated 
back by the BIR-Jimple-Java Tracer component into the 
original source code. Therefore, the user can check the 
behavior of his program as in a debugger [CDH+00].  

 

5. Modeling and Checking Patterns 
 
This section describes our experience in specifying 

and checking the concurrent design patterns previously 
described in Section 3.3. 

The approach that we adopted was the following. 
First, we implemented each one of the patterns with Sun 
JDK1.3.  Then, the programs were tested in Bandera in 
order to verify their absence of deadlock. After that, in 
order to test the Bandera ability to detect concurrency 
problems, the concurrency optimizations of this code 
were relaxed. In other words, the synchronized modifiers 
were removed from the code.  

Finally, using the Bandera Specification Language 
(BSL) we inserted labels and expressions as javadoc 
comments in the source code. It is important to note that 
the BSL is very powerful: we created several versions of 
the same checking.  

This section is organized as follows. For each pat-
tern, we describe the conditions that need to be checked 
and the different versions of the checking using BSL as 
well as the part of the code annotated. 

 

5.1. Single-Threaded Execution Pattern 
 
The Figure 6 describes this pattern, implemented in 

order to be properly parsed by Bandera. 
This concurrent design pattern was specially de-

signed to prevent the following two concurrent problems. 
(i) Two different instances of TrafficSensor can not 
notify the TrafficSensorController object at the same 
time. In other words, “If both calls execute at the same 
time, they produce an incorrect result. Each call to the 
vehiclePassed() method is supposed to increase the vehi-
cle count by one. However, if two calls of this method 
execute at the same time, the vehicle count is incremented 
by one instead of two.”[Grand98]; and 
(ii) The TrafficTransmitter and the TrafficSensor 
can not access the TrafficSensorController at the same 
time. In both cases, one update will be lost if the de-
scribed situation happens.  

The absence of these problems is guaranteed by the 
use of the synchronized modifier in the getAndClear-
Counter() and vehiclePassed() operations. 
 

TrafficTransmitter

«create» +TrafficTransmitter()
+setTrafficController()
+run()
-transmit()

TrafficSensor

-sleepTime2: double =  0

«create» +TrafficSensor()
+setTrafficObserver()
+run()
-monitorSensor()
-detect()
-generateRandomLongNumber()

TrafficObserver
«interface»

+vehiclePassed()

TrafficSensorController

-numberOfExecutions: int
-vehicleCount: int

«create» TrafficSensorController()
+vehiclePassed()
+getAndClearCount()

TrafficSensorA

«create» TrafficSensorA()

TrafficSensorB

«create» TrafficSensorB()

TrafficSensorC

«create» TrafficSensorC()

-observer

-controller

 
Figure 6 Single Threaded Execution Example 
 

5.1.1. First Checking  

 
Using the Bandera tool, we specified a logical predi-

cate against which the model was checked. The predicate 
states that the method vehiclePassed() can not be invoked 
(is absent) between the invocation and the end (return) of 
the method getAndClearCounter(). Since these methods 
are not synchronized anymore, this situation could hap-
pen, and therefore Bandera should present a counter-
example. The predicate, in BLS, is described as follows.  

 
checkReadAndWriteAtSameTime2: forall 
[s:TrafficSensorController]. {TrafficSen-
sorControl-
ler.vehiclePassed.vehiclePassedIsInvoked(s)
} is absent between  
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{TrafficSensorCotroler.getAndClearCount. 
getAndClearInvoked(s)} and 
 {TrafficSensorController.getAndClearCount. 
getAndClearReturned(s)}; 

 
The annotation of the code used in this predicate is 

presented as follows. 
 

/** 
* @observable  
* LOCATION [getAndClearCountCallLocation] 
* getAndClearCountCall; 
* @observable 
*    INVOKE getAndClearInvoked; 
* @observable 
*    RETURN getAndClearReturned;  
*/ 
public int getAndClearCount() { (…) } 

 
/** 
 * @observable  
* LOCATION[vehiclePassedCallLocation]  
* vehiclePassedCall: (numberOfExecu-
tions<=1); 
 * @observable 
 * INVOKE vehiclePassedIsInvoked; 
 * @observable 
 * RETURN vehiclePassedIsReturned; 
 */ 
public void vehiclePassed()  
{ (…) } 
 

5.1.2. Second Checking 

 
Using this same relaxed model, the second checking 

specifies that the method vehiclePassed() can not be in-
voked (is absent) after the invocation of the method ge-
tAndClearCounter() until this second method finishes 
(returns). Again, these methods are not synchronized, 
therefore Bandera should present a counter-example. The 
BSL code is presented as follows. 

 
checkReadAndWriteUsingAfterUntil: forall 
[s:TrafficSensorController]. {TrafficSen-
sorControl-
ler.vehiclePassed.vehiclePassedIsInvoked(s)
} is absent after {TrafficSensorControl-
ler.getAndClearCount. getAndClearIn-
voked(s)} until {TrafficSensoControl-
ler.getAndClearCount. getAndClearRe-
turned(s)}; 

 
The same annotations used in the First Checking 

were used in this checking. 
 

5.1.3. Third Checking 

 

This last checking uses a different approach: a vari-
able called numberOfExecutions. This variavle was de-
clared and inserted inside the implementation of the 
method vehiclePassed(). It is responsible for counting the 
number of clients that are executing the operation simul-
taneously. Hence, a concurrent use of the operation is 
detected whenever this counter is greater than one. 

The Bandera predicate that checks the code for this 
occurrence is presented as follows. 

 
raceConditionWithAttr: forall 
[c:TrafficSensorController] 
.{TrafficSensorController .lessThanTwo(c)} 
is universal globally; 

 
The globally clause specifies that this predicate must 

be true in the full scope of the program. 
In this example, the numberOfexecutions variable 

was incremented and decremented as follows. 
 

public void vehiclePassed() {  
 vehiclePassedCallLocation: 
 this.numberOfExecutions++; 

this.vehicleCount++; 
 this.numberOfExecutions--; 
} // vehiclePassed() 
 

It is also necessary to present the part of the code re-
sponsible for declaring the variable numberOfExecutions 
and the related annotation that describes the expression 
about this variable: 
 
/** 
 *  @observable 
 *     EXP lessThanTwo:  
 (numberOfExecutions <= 1; 
 */    
class TrafficSensorController implements 
TrafficObserver { 

private int numberOfExecutions = 0; 
 private int vehicleCount;    

 
5.2. Producer-Consumer 
 

The goal of this concurrent design pattern is to avoid 
that one “consumer” reads data that it was not produced 
yet. In this case, the “consumer” must wait for a “pro-
ducer” to provide some data. When this happen, the “con-
sumer” is allowed to read the data.  

This problem can be solved if expressed using the 
wait() an the while loop in the class Queue. This class 
implements the shared resource where producers add 
data, and from consumers read data. 
 
synchronized public TroubleTicket pull() { 
   while (data.size() == 0){ 
       try { 
           wait(); 
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       } catch (InterruptedException e) { 
       } // try/catch 
   } // while 
   TroubleTicket tkt =  
          TrobleTicket)data.get(0); 
    data.remove(0); 
    return tkt; 
} // pull() 

 
Another problem that can happen in this pattern is 

the lost of one update, similar to the condition (i) in the 
Single-Threaded pattern. In this case, the pattern must 
avoid that two producers provide the information at the 
same time, because in this case one of the updates would 
be lost.  

The absence of these problems is guaranteed by the 
use of the synchronized modifier in the method:  
 
synchronized public void push(TroubleTicket 
tkt) { 
  … 
} // push 

 
After the specification, these models were checked 

with Bandera as described in the next subsections. 

5.2.1. First Checking 

 
The first condition can be checked is if we remove 

the code responsible for blocking the consumers while 
some producer produces some data. In the method pre-
sented above it is reflected as the bold part.  

In order to check this program, we can create a pre-
condition that establishes that a consumer can only call 
the pull method when a producer already produced some 
data. The new code to be tested, as well as the annotation 
in the code is the following: 
 
/** @assert 
 * PRE dataAvailable: data.size() > 0; 
 */ 
public TroubleTicket pull() { 
   while (data.size() == 0){ 
       try { 
           wait(); 
       } catch (InterruptedException e) { 
       } // try/catch 
   } // while 
   TroubleTicket tkt =  
          TrobleTicket)data.get(0); 
    data.remove(0); 
    return tkt; 
} // pull() 

 
The gray code means that this part was removed 

from the program during the tests. 
Since this is an assertion, there is no need to instanti-

ate it as temporal pattern (absent or universal globally, for 

example) as we have been doing in the previous check-
ing.  

5.2.2. Second Testing 

 
This test was created to check the second condition, 

i.e., if there are two concurrent calls to the method 
push(), then one update is lost. In other words, we want 
to guarantee that there is just one process executing the 
method push all the time.  

Here, we used the same approach described in the 
third checking of the pattern Single-Threaded. A variable, 
called numberOfConcurrentPushes, was created and in-
serted inside the implementation of the method push(). 
This variable is responsible for counting the number of 
producers that are providing data and adding this objects 
to the queue simultaneously. Hence, a concurrent use of 
the operation is detected whenever this counter is greater 
than one. 

The Bandera predicate that checks the code for this 
occurrence is presented as follows. 
 
lostUpdate: forall 
[q:Queue].{Queue.lessThanTwo(q)} is univer-
sal globally; 

 
Again, the globally clause specifies that this predi-

cate must be true in the full scope of the program. The 
part of the annotated Java source code that is related to 
this checking is presented below:  

 
/** 
 *   @observable 
 * EXP lessThanTwo:    
(numberOfConcurrentPushes < 2); 
 */ 
class Queue { 
    private int arraySize = 100; 
    private TroubleTicket[] data;  
    private int currentPosition = 0; 
 
     private int  
         numberOfConcurrentPushes = 0; 
 
 public void push(TroubleTicket tkt) {  
 numberOfConcurrentPushes++; 
       TroubleTicket ticket = tkt;  
  add(ticket);    
       notify();   
 numberOfConcurrentPushes--; 
} // push(TroubleTicket) 

 
5.3. Read-Write Lock 

 
The goal of this concurrent design pattern is to coor-

dinate the acquisition of locks and avoid that: 
1. Two clients get the write lock at the same time, and  
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2. Prevent the acquisition of read locks from the mo-
ment when a write lock is acquired, until the moment 
it is relinquished. 
 
This concurrency problem is implemented by the 

code in section 3.4.4. There are three critical sections 
guarded by the synchronized clause in the writeLock() 
operation, as well as synchronized modifiers in the decla-
ration of the operations readLock() and done(). 

Using the same idea of the other two patterns, in or-
der to check this pattern, these clauses were relaxed. In-
voke and return expressions are inserted in the headers of 
these operations. In order to check the synchronized 
clauses inside the operation, we can use the definition of 
labels. In Bandera, label conditions become true as soon 
as this point of the code is reached. Another approach is 
to use variables and counters as in the example in section 
5.2.2. 

We have to check if two or more concurrent proc-
esses reach a critical section at the same time. If it is pos-
sible to occur, we could reach inconsistent reads and lost 
updates. 

As the checking expressions are analogous to the 
ones presented in the previous subsections, they are not 
presented here. 

 
Here it is an example of the user of label inside the 

writeLock() operation. The labels inWaitList, waiting and 
outWaiting were inserted in the code. 

 
/** 
* @observable 
*  RETURN writeLockReturn; 
*  INVOKE writeLockCall; 
*  LOCATION[inWaitList] waitList; 
*  LOCATION[addingToList] addingList; 
*  LOCATION[readingThread] readingTh; 
*  LOCATION[waiting] waitingCond; 
*  LOCATION[outWaiting]outWaitingCond; 
*/ 
public void writeLock() throws 
      InterruptedException { 
    Thread thisThread; 
     { // previous synchronized(this) 
        if (writeLockedThread==null && out-
standingReadLocks==0) { 
           inWaitingList:  
           { writeLockedThread = 
Thread.currentThread(); } 
            return; 
        } // if 
        readingThread: 
        thisThread = 
Thread.currentThread(); 
        addingToList: 
        waitingForWrite-
Lock.add(thisThread); 

    } // synchronized(this) 
    { // previous synchronized (thisThread) 
        while (thisThread != writeLock-
edThread) { 
            waiting: 
            thisThread.wait(); 
        } // while 
    } // synchronized (thisThread) 
    { // previous synchronized (this) 
        int i = waitingForWrite-
Lock.indexOf(thisThread); 
        outWaiting: 
        waitingForWriteLock.remove(i); 
    } // synchronized (this) 
} // writeLock 

 
In this relaxed code, suppose the example in which 

two threads call writeLock() at the same time. If the write 
lock is already taken, they skip the first if guard. The 
thisThread variable is updated by one thread and, is 
modified, just after, by the other thread. The result is that 
only one thread is inserted at the waiting list, instead of 
two of them.  

This situation can be detected with the following ex-
pression: 

 
lostUpdate: forall 
[q:ReadWriteLock].{ReadWriteLock.readingTh(
q)} is absent 
after {ReadWriteLock.readingTh(q)} 
until {ReadWriteLock.addingList(q)} 
 globally; 

 
In a similar way, other expressions can be composed.  

6. Experiences using Bandera 
 

This section describes the experience of the authors us-
ing the Bandera toolset. Basically, there are three subsec-
tions: problems identified, results and the features that we 
identified as promising in Bandera. 
 
6.1. Problems Identified 
 

We had many different problems with the parser 
used in Bandera. These problems were reported to the 
support group of Bandera, but up to now, we did not have 
any answer from them. These problems are briefly de-
scribed below: 

 
1. All source code must be in a unique file in order to 

be read and parsed by the Bandera. This approach 
seems to compromise the modularity of the code, and 
hinders the scalability of the tool for big Java pro-
grams. 

2. Some classes that are declared in the code, but are 
not instantiated, generated a parsing error. Surpris-
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ingly, abstract classes are supported. 
3. The tool did not properly parse some classes from the 

package java.util such as ArrayList, found in the im-
plementation of two of the design patterns analyzed. 
The Bandera also did not recognize the invocation of 
operations as vector.size() when vector is a 
java.util.Vector  instance. 

4. In some cases, the use of variables passed as parame-
ters to methods generates errors in the parsing. For 
example, if we invoke the method sleep(globalVar) 
in a subclass of Thread, where globalVar is a global 
variable, the parser produces a parsing exception. 

5. The static invocation of operations as 
Thread.sleep(Math.random()*100), used in our ex-
amples were not parsed. 
 
Due to these problems, the patterns had to be rewrit-

ten several times in order to overcome these limitations of 
the tool. Special care was taken in order to keep the se-
mantic of the examples after these changes. For example, 
in the Producer-Consumer example, instead of using the 
java.util.ArrayList class, we defined an alternative array 
of TroubleTicket objects. 

Furthermore, since the tool does not handle correctly 
multiple instances of the same class, we had to define 
many subclasses of TrafficSensor, as described in Figure 
6. This approach was inspired in the examples provided 
in the Bandera manual [MT01], in which class declara-
tions are repeated in order to define many class types, 
with different names, but with similar implementation. 

In fact, the following patterns were not tested: (i) the 
Read-Write Lock pattern was not tested because its im-
plementation uses a static call: 
Thread.getCurrentThread(); and (ii) the Producer-
Consumer pattern was not tested because, after several 
tests, we were still not able to rewrite the code “prop-
erly”, to be successfully parsed by Bandera. 

During this rewriting phase, one could add errors to 
the code. Therefore, in order to avoid that each time we 
rewrote the code, we checked it with the JDK1.3 envi-
ronment. Note that we are not claiming that this process 
was fault-tolerant or without errors, instead we are saying 
that we tried to avoid this problem. In fact, this is one of 
the limitations of our approach: the best solution is to 
formally prove that the programs are semantically equiva-
lent.  

Another problem identified was the Slicer. Although 
very useful in removing irrelevant parts of the code, it can 
also slice parts of the program that are essential for its 
execution. For example, it can slice classes that are part 
of the main method and are responsible, for example, for 
the instantiation of the main trhreads of the program to be 
analyzed. In this case, the model check results in success 
since the code analyzed does not have all the objects and 

the properties of the original one. 
Bandera allows the specification of temporal logical 

predicates using templates. These templates are not sim-
ple and, sometimes, do not allow expressing simple 
statements. For example, we would like to check if two 
methods are called at the same time. The INVOKE anno-
tation specifies that the following condition is true when 
the method is invoked. Then, we would like to be able to 
do something like:  

 
/** @ observable 
  * INVOKE firstMethodCalled; 
*/ 
    public void firstMethod() { … }  
 
/** @ observable 
  * INVOKE secondMethodCalled; 
*/ 
    public void secondMethod() { … }  
 
/** @observable 
  *  EXP BothMethodsCalled:  
(firstMethodCalled && secondMethodCalled); 
*/ 

 
However, we can not express this predicate because, 

there is not the temporal logic pattern supported by Ban-
dera that could express this idea of simultaneous execu-
tion of operations. 

 
6.2. Results 
 

In this session we summarize our experience using 
Bandera and present some of the results we obtained. 

Bandera seems to be a very powerful tool, however, 
one of the main claims of the authors, that they solve the 
semantic gap between artifacts and tools is still not true. 
The JJJC parser was not able to properly parse all the 
design patterns specified in Java, without modifications 
in the source code. Due to this problem, our code had to 
be modified many times, making this process of specify-
ing existing code, a non-trivial task.  

Due to the use of advanced techniques inside the 
Read/Write Lock code as invocation of static operations, 
we were not able to modify this example and, at the same 
time, keep the original semantic of the application. The 
use of the static invocation did not let us parse this code, 
although it was successfully compiled by the JDK1.3. 

The Read/Write lock example and the Producer-
Consumer could not be parsed in the non-sliced mode. 
The system generated a runtime exception during the 
model checking, which could be a result of an error in the 
conversion of the internal JJJT compiler to the formal 
language of the SPIN model checker. 

The main results of our experiments are presented in 
Table 1 as follows: 
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 SingleThrea
dedExecu-
tion 

Read/Write
Lock 

Producer-
Consumer 

Parsed Without 
Modification 

No No No 

Parsed With 
Modification 

Yes No Yes 

Success Checked 
W/O Code Slicer 

Yes No No 

Success Checked 
With Code Slicer 

Yes No Yes 

Detected Coun-
terex. W/ Slicer 

Yes No No 

Detected Coun-
terex. W/O Slicer 

No No No 

Table 1 A Summary of the results ruining the tests in the 
models. 

 
We believe that many of the errors found during the 

execution of the tests presented in this paper, was a result 
of the immaturity of the tool. Bandera is still in 0.428 pre-
alpha version. 

According to [MT01], 600 property specifications 
were studied for this project: 94% were instances of the 
patters, in which 70% of the properties were ‘universal’ 
or ‘response’ properties. Our experience shows that these 
Bandera templates allow the specification of many tem-
poral logic predicates. However, they are not simple to 
define and, to the extent of our knowledge, do not allow 
the expression of simple statements as the simultaneous 
execution of processes. 

The authors also claim that Bandera was used to 
specify many systems, as a Java version of a space-craft 
control system, a scheduler for real-time systems, a ge-
neric framework for implementing multithreaded staged 
calculations and so on. In these examples, it identified 
some faults in some of the applications, but not identified 
seeded faults in others. This is in concert with our experi-
ence since Bandera was not able to produce counterex-
amples to the majority of our models. 

  
 
6.3. Bandera Features 

 
Despite of the errors found during the execution of 

the Bandera toolset, the tool presents several important 
features that will be discussed below. 

One important feature provided by Bandera is its lan-
guage for specifying abstractions is BASL. This language 
supports the specification of pre and post conditions, as-
sertions and temporal properties for defining predicates 
using common Java control points and events (such as 
method invocation and return). It also allows the defini-
tion of expressions using Java code variables. In fact, we 
could express the checking for the Single-Threaded pat-

Threaded pattern in three different ways: sections 5.1.1 
and 5.1.2 present two of three ways.  

On the other hand, according to the Bandera’s au-
thors [MT01], “although temporal logic, such as LTL and 
CTL, are theoretically elegant, practitioners and even 
researchers sometimes find it difficult to use them to ac-
curately express the complex state and event sequencing 
properties often required by software.”. We completely 
agree with this position and, perhaps, that is the reason 
why we had problems using the temporal patterns pro-
vided by Bandera (see section 6.1.1). The process of 
compilation from the source code annotation, together 
with the program logic expressed by the Java code was 
not always successful. Many parsing and model checking 
errors were detected, some of them, related to the transla-
tion of the Bandera’s intermediate language, Jimple, to 
the Promela language. If the Bandera user interface did 
not obligated us to use their specific temporal patters, 
perhaps, we could have been successful specifying and 
checking the properties of the concurrent patterns.  
 

7. Conclusions 
 

This paper presents the validation of three different 
concurrency design patterns. The patterns were imple-
mented in Java and were extracted from [Grand98], while 
the validation was performed using the Ban-
dera[CDH+00] toolset. Bandera supports the verification 
of properties specified in its specification language using 
model checking. Slicing and abstraction are provided in 
order to reduce the problem of state space explosion. 

Unfortunately, our results were not useful since the 
version of Bandera that we used had several problems. In 
fact, we could not run tests in one of the three design pat-
terns and in another one, we just could run partial tests.  

The approach presented in this paper can be applied in 
other patterns using other model checkers like JavaPath-
Finder or SAL. We argue that the checking of design 
patterns can validate the advantages claimed by them. It 
also can help to increase the adoption of other patterns. 
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