
1

Checking Java Concurrency Design Patterns Using Bandera

Cleidson R. B. de Souza and Roberto S. Silva Filho
Department of Information and Computer Science

University of California, Irvine
{cdesouza, rsilvafi}@ics.uci.edu

Abstract
Software patterns express a generic solution for a spe-
cific design problem, conveying some knowledge and
expertise from designers. Model checking is an automatic
technique for verifying finite state systems that deter-
mines if a property holds of the given finite state machine.
The paper describes the experience of the authors in
modeling three concurrency design patterns using the
Bandera toolset for model checking. The concurrency
properties of these patterns were specified using the
BASL language and submitted for checking after the re-
laxation of the code. Due to some problems related to the
immaturity of the tool, only one model could be checked,
in one special property. The main contribution of the pa-
per is the formalization of the patterns and the sequence
of steps followed in order to formalize and check these
patterns.

Key Words: Pattern verification, Design Patterns, Model
Checking, Software Specification.

1. Introduction

Software patterns [Gamma94] facilitate reuse of

well-established solutions to known problems. Although
there are several different ways of presenting a pattern,
there is an agreement in the community that a pattern
description must include, at least its name, description,
problem and the solution proposed. Therefore, when a
designer identifies the same problem, he can apply the
correspondent pattern to that problem and easily solve it.

There are several levels of abstraction for a software
pattern [BMRSS96]: in an implementation level, they are
called idioms; in a design level, design patterns; and fi-
nally if a higher-level of abstraction is used, they are
called architectural patterns. In our work, we are dealing
specifically with design patterns, therefore, in the rest of
the paper patterns and design patterns will be assumed as
synonyms.

It is also a common practice to present the informa-
tion about the advantages of using a pattern. This helps
the designer in the process of choosing a design pattern,
when there are more than one of them available to solve
the same problem. These advantages are usually written
by the pattern developer and are based on his experience.
In some cases, before being published the patterns are
discussed in conferences by experts who evaluate the
pattern, i.e., these experts try to validate them. However,
this process is completely informal, it does not use any
kind of formal method or tool in order to validate those
advantages. Of course, this process is error-prone and
suggests that some kind of formal approach must be used.
This paper addresses this issue.

We present a formal specification of the properties of
three concurrency design patterns implemented in Java.
The analysis was performed using a Java source code
model checker tool called Bandera [CDH+00]. Three
different design patters were implemented and submitted
for checking by this tool. These implementations had to
be modified due to problems in Bandera’s parser. We
were not completely successful in checking all patterns
because of bugs in the tool such as this parser problem.

We specified some properties using the specification
language provided by the tool in order to validate the
concurrency control features which the pattern claimed to
address. In this case, we used an approach for checking
properties called model checking. Model checking is an
automatic technique for verifying finite state systems that
determines if a property holds in a finite state machine
(Chapter 1) [CGP99]. This finite state machine is auto-
matically generated by Bandera, based on the source file
presented to this tool. During the checking, an exhaustive
search is done in the states to check if the property holds
at every state.

1.1. Paper Description

The paper is organized as follows. Section 2 presents
the motivation to our work. The next section, briefly dis-
cusses the concept of design patterns, as well as presents
the three design patterns that are checked. Section 4 pre-

2

sents the Bandera model checker toolset. Then, section 5
presents the annotations that were inserted in each pattern
with the tests that we developed to check the satisfaction
of these conditions. Section 6 summarizes our results and
our experience using Bandera. Finally, some conclusions
are presented.

2. Motivation

Software patterns express a generic solution for a

specific design problem, conveying some of the knowl-
edge and expertise from designers. These patterns are
abstracted in a way that other designers can reuse.

Design patterns, such as that provided by
[Gamma94] are typically presented and documented us-
ing textual descriptions and problem motivations. It also
uses object-oriented diagrams (class and sequence), and
an implementation in a specific programming language,
using a simple problem example. This approach has been
successfully applied in other books and conferences. In
fact, there are several conferences and workshops de-
voted to patterns.

The approach presented in this paper addresses this
issue. We argue that validating design patterns using
some kind of formal method could help the adoption of
patterns, providing a way to check their reliability and
correctness. By validating, we mean checking if the pat-
terns provide the features that they claim. For example,
does the Read/Write Lock [Grand98] pattern guarantee
mutual exclusion? Since nowadays there are thousands of
patterns, can one trust that a pattern provides all advan-
tages described in their specification? These questions are
addressed in this paper through the formalization of three
concurrent design patterns. By formalizing, we mean the
process of mathematically verifying properties of these
patterns. Using this approach, the knowledge that is ex-
pressed in a design pattern can be validated, i.e., we avoid
the problem of someone defining a pattern that does not
provide the advantages claimed.

In order to validate design patterns, we suggest the
following approach:

1. First, the patterns to be checked must be identified.

In our case, we selected a small (three) number of
concurrency patterns proposed by [Grand98] in his
book.

2. The properties to be checked are identified. Since we
are interested in checking concurrency patterns, the
most important properties identified were deadlock
freedom and mutual exclusion.

3. Then, according with these properties, the adequate
formal method is selected. We selected a model
checking approach to validate the patterns because it

provides support for checking deadlock-freedom as
well as other runtime properties of the system.

4. Now, a specific tool supporting the method should be
selected. In our case, Bandera [CDH+00] was chosen
because of it provides support for Java programs
checking using annotations in Java code.

5. Usually, the tools used in model checking have some
specific input language, such as SPIN’s Promela for-
mal language. Therefore, the patterns must be speci-
fied in this language. Since Bandera uses Java source
code as its input, this step should not be necessary.
We discuss it in more details in section 4.

6. Finally, the properties to be checked are specified
according to the tool selected. Bandera has a lan-
guage called BSL (Bandera Specification Language)
which supports different constructs such as pre and
post conditions, invariant expression definition,
predicate evaluation and so on. These annotations are
provided in the Java code to be analyzed as JavaDoc
notes.

Of course, this sequence of steps is not mandatory,

i.e., it is just a recommendation. It can be modified to
accommodate other objectives. For example, the selection
of Bandera influenced our decisions in the opposite way:
we wanted to test the Bandera toolset, therefore we se-
lected concurrency patterns previously implemented in
Java.

3. Design Patterns: History, Definition and
Java concurrency Patterns

Design Patterns are design solutions adapted in the

resolution of frequent problems in the software develop-
ment phase. In the following sections, we present a brief
history of design patterns, the concepts that comprise
their use and documentation, and we describe the patters
used in the project.

3.1. Brief History of Design Patterns

Software patterns have their origin in the ideas pub-

lished in 1977 and 1979 by Christopher Alexander in the
field of architecture patterns for urban planning [Alexan-
der79]. In his work, the design rationales of common
design solutions were presented in a structured way. In
1987, Ward Cunnigham and Kent Beck verified that the
approach of documentation and reuse of ideas, presented
in this work, could be applied in the Software Engineer-
ing field. In 1987, Ward Cunnigham and Kent Beck de-
scribed five patters for user interface design. Such ideas
were based on the initial work of Christopher Alexander.

3

(OOPSLA-87 – “Using Pattern Languages for Object-
Oriented Programs”).

In 1994, the book Design Patterns by Reich Gamma,
Richard Helm, John Vlissides and Ralph Johnson
[Gamma94], also known as "Gang of Four", popularized
the concept of software design pattern.

In 1998 the book “Patterns in Java”, by Mark Grand
[Grand98], was published. It releases as an evolution to
the "Gang of Four" book. The book presents several pat-
terns, many of them not present in the Gamma’s book. In
this book, the UML notation is used to describe the gen-
eral solutions and the design patterns. The examples are
coded and described using the Java programming lan-
guage.

3.2. Concepts

According to Alexander [Alexander79], "A Pattern

could be defined as a three part rule that expresses a rela-
tion between a certain context, a problem and a solution".

Design patterns represent reusable structures and
concepts, applied during the design phase of Software
Engineering process. They improve the software devel-
opment by presenting generic solutions that provide flexi-
bility and understanding that facilitate future extensions
to the software.

Design patterns present many advantages as follows.

1. They improve reuse and generality. Experienced
developers can use recurring and generic solutions,
instead of implementing a proprietary and not so ge-
neric solution each time it is necessary.

2. They provide a common vocabulary to developers.
Design patterns allow the collaboration of develop-
ers, which can use these patterns to exchange knowl-
edge and discuss problems in terms of well-known
patterns, in a higher abstraction level.

3. They improve the design documentation. A project
can be expressed in a higher level, using patterns that
are well known by the developers, instead of using a
proprietary code and practice.

4. They allow the expert programmers to represent their
knowledge in a reusable and more documented way,
creating a medium to teach good practice design to
novice developers.

The use of design patterns is supported by the ex-

perience and knowledge of the developers, which should
be able to understand and specify systems using this ap-
proach. This approach, however, can be difficult to use in
environments in which this practice is not so widespread.
It also requires an additional effort from the programmers
to document, use and keep these patterns.

Design patterns can vary according to the granularity

and its abstraction level. Their classification, according to
some criteria, makes it easy to understand, document and
be identified. In this work, we used some of the Concur-
rency Design patterns described in the Mark Grand's
book.

3.3. Concurrency Design Patterns

These patterns present generic solutions to frequent

concurrency problems found in concurrent and distrib-
uted systems. They focus on two kinds of problems, the
sharing of resources, focusing on the deadlock manage-
ment, and the concurrent execution of operations. These
operations must follow a correct sequence of operations,
for example, the insertion of a data element in a data
structure should happen before its removal. These are the
patterns described in the Book: (1) Single Threaded Exe-
cution, (2) Guarded Suspension, (3) Balking, (4) Sched-
uler, (5) Read/Write Lock, (6) Producer-Consumer, and
(7) Two-Phase Termination.

We selected three of these patters. They were the
Single-Threaded Execution, Read/Write Lock and Pro-
ducer-Consumer. These patters are described in the fol-
lowing subsections.

3.3.1. Single Threaded Execution [Grand 98]

This design pattern describes a solution for the con-

currency control problem in the case of multiple readers
and multiple writers to a single resource. It prevents prob-
lems that may occur when concurrent callers invoke an
operation and both calls access the shared resource at the
same time. The most common problems in this situation
are lost updates and inconsistent reads.

3.3.2. Context

Consider a system that monitors the flow of cars in a

highway. Sensors in each lane of the highway monitor the
passage of cars, sending this information to a local con-
troller. This controller is attached to a transmitter that
periodically sends the total information to a central com-
puter. The class diagram of this system is presented in
Figure 1 below.

4

TrafficTransmitter

«create» +TrafficTransmitter()
+setTrafficController()
+run()
-transmit()

TrafficSensor

-sleepTime2: double = 0

«create» +TrafficSensor()
+setTrafficObserver()
+run()
-monitorSensor()
-detect()
-generateRandomLongNumber()

TrafficObserver
«interface»

+vehiclePassed()

TrafficSensorController

-numberOfExecutions: int
-vehicleCount: int

«create» TrafficSensorController()
+vehiclePassed()
+getAndClearCount()

-observer

-controller

1..*

1
1

1

Figure 1 Single Threaded Execution - Traffic sensor
classes.

Instances of the TrafficSensor class represent the

sensors in the lanes. Each time a car is detected, a sensor
calls the vehiclePassed() operation in the TrafficObserver
interface. A TrafficTransmitter instance collects the num-
ber of vehicles passed in a road periodically. It does this
operation, calling the getAndClearCount() operation in
the TrafficSensorControler interface.

Concurrency situations:

A lost update may occur when two TrafficSensor in-

stances call the vehiclePassed() operation in a TrafficSen-
sor controller instance at the same time. In this case, the
vehicleCount can be incremented only once, instead of
two times.

Race conditions may occur when both a Traffic-
Transmitter and a TrafficSensor instances try to access
the vehicleCount variable at the same time. This access is
indirectly provided by the vehiclePassed() and getAnd-
ClearCount() operations. The final value of this counter
depends on the order of the execution of these two con-
current events. If the TrafficTransmitter executes first, the
vehicleCount is set to zero and the operation invoked by
the TrafficSensor changes the vehicleCount value to its
previous value plus one, instead of the current value
(zero), to one.

To avoid these two problems, the operations vehiv-
lePassed() and getAndClearCount() are guarded with the
synchronized modifier, which ensure that only one proc-

ess can invoke one operation at a given time.

3.3.3. Consequences

Guarding methods can reduce the performance of the

application, since threads have to wait for other ones in
order to reach the shared resource;

The use of guarded methods makes the application
thread-safe;

The use of guards in methods can enable the oppor-
tunity to threads become deadlocked

3.3.4. Code Examples

The following code snippet describes the main points

of the implementation of the Figure 1example, specially
the use of synchronized modifiers in the operations.

/**
* This method is called when a traffic
* sensor detects a passing vehicle.
* It increments the vehicle count by one.
*/
public synchronized void vehiclePassed() {

vehicleCount++;
} // vehiclePassed()

/**
* Set the vehicle count to 0.
* @return the previous vehicle count.
*/
public synchronized int getAndClearCount()
{

int count = vehicleCount;
vehicleCount = 0;
return count;

} // getAndClearCount()

3.4. Read/Write Lock [Lea 97]

This design pattern implements a solution for the

concurrent control problem existing when multiple access
to read() and write() operations, in an shared object, are
performed concurrently. It implements a read/write lock
acquisition protocol that enable multiple concurrent read
calls whenever a write operation is not being performed.
During a write operation, the writer must have exclusive
access to the variable being modified. No simultaneous
reads or writes are allowed during this operation.

3.4.1. Context

5

Consider a piece of software that controls electronic
auctions. Items are put up for auction. People participate
in the auction observing the bid values for each item.
They also contribute with their own bids for some items.
In a given moment, the auction of an item will close. In
this example, there are many people reading bids from the
items, but only one person can make a bid at a time.

The use of the Single Threaded Execution Desing
Pattern [Grand98] solve the concurrency problem de-
scribed above, but does not allow the multiple read of the
bids at the same time. In this situation, the Read/Write
Lock design pattern allows the single execution of the
write operations allowing, however, the concurrent read
of the data. The exchange of the messages in this scenario
is described in Figure 2 below.

 : UserInterface

 : Bid

 : ReadWriteLock

B.2:done()A.2:done()

A:getBid() B:setBid()

A.1:readLock() B.1:writeLock()

Figure 2 ReadWriteLock Object Diagram.

The setBid() operation modifies the current bid and

prevents the getBid() operation to read inconsistent data.
This operation waits for the return of the last getBid() or
setBid() operations, before modifying the current bid
value. The getBid() operation can be invoked at any time,
as soon as the setBid() operation is not being executed.

The Read/Write Lock design pattern encapsulates the
concurrency control described above, together with the
lock acquisition and relinquishment protocol, assuring
concurrent reads and exclusive writes.

The readLock() operation returns immediately,
unless there is a writeLock() operation being executed, or
waiting to be executed. The writeLock() operation signal-
izes the start of a reading cycle, and goes to a waiting
state If: there is another writeLock() operation executing
at this moment, or if there is a readLock() operation in
execution.

The done() operation relinquishes a read or a write
lock. This operation is invoked whenever the acquired
locks are not necessary anymore.

3.4.2. Consequences:

The Read/Write Lock design pattern increases the

concurrency of the reading operations and achieves mu-
tual exclusion. It also allows the reuse of the concurrency
control logic, increasing the concurrency whenever there
are more read than write operations. However, this pat-
tern does not perform well when the number of write op-
erations is bigger than the number of read operations. For
this last case, the use of the Single Threaded Execution
pattern is recommended.

3.4.3. Solution:

The generic pattern for the concurrent read write

problem is depicted in the Figure 3 below.

Data

+getAttribute1()
+getAttribute2()
+...()

ReadWriteLock

+readLock()
+writeLock()
+done()

uses

1

1

Figure 3 ReadWiteLock Pattern

The set and get operations call the operations write-

Lock() and readLock() of a ReadWriteLock object before
getting access to the shared resource. This invocation is
performed using delegation. The done operation is called
at the end of this operation. For each object of type Data,
there is an associated object from type ReadWriteLock

3.4.4. Code Example:

The following code snippet describes the main points

of the implementation of the Figure 2 example.

public class Bid {
 private int bid = 0;
 private ReadWriteLock lockManager =

 new ReadWriteLock();

public int getBid() throws

6

 InterruptedException{
 lockManager.readLock();
 int bid = this.bid;
 lockManager.done();
 return bid;
} // getBid()

public void setBid(int bid) throws

 InterruptedException {
 lockManager.writeLock();
 if (bid > this.bid) {
 this.bid = bid;
} // if
 lockManager.done();
} // setBid(int)
} //class

public class ReadWriteLock {
 private int waitingForReadLock = 0;
 private int outstandingReadLocks = 0;

 private Thread writeLockedThread;
 private ArrayList waitingForWriteLock =
 new ArrayList();

 synchronized public void readLock()
throws InterruptedException {
 waitingForReadLock++;
 while (writeLockedThread != null) {
 wait();
 } // while
 waitingForReadLock--;
 outstandingReadLocks++;
} // readLock()

public void writeLock() throws
 InterruptedException {
 Thread thisThread;
 synchronized (this) {
 if (writeLockedThread==null && out-
standingReadLocks==0) {
 writeLockedThread =
Thread.currentThread();
 return;
 } // if
 thisThread =
Thread.currentThread();
 waitingForWrite-
Lock.add(thisThread);
 } // synchronized(this)
 synchronized (thisThread) {
 while (thisThread != writeLock-
edThread) {
 thisThread.wait();
 } // while
 } // synchronized (thisThread)
 synchronized (this) {
 int i = waitingForWrite-
Lock.indexOf(thisThread);
 waitingForWriteLock.remove(i);
 } // synchronized (this)
} // writeLock

synchronized public void done() {
 if (outstandingReadLocks > 0) {

 outstandingReadLocks--;
 if (outstandingReadLocks==0
 && waitingForWrite-
Lock.size()>0) {
 writeLockedThread =
(Thread)waitingForWriteLock.get(0);
 writeLockedThread.notifyAll();
 } // if
 } else if (Thread.currentThread() ==
writeLockedThread) {
 if (outstandingReadLocks==0
 && waitingForWrite-
Lock.size()>0) {
 writeLockedThread =
(Thread)waitingForWriteLock.get(0);
 writeLockedThread.notifyAll();
 } else {
 writeLockedThread = null;
 if (waitingForReadLock > 0)
 notifyAll();
 } // if
 } else {
 throw new IllegalStateExcep-
tion("Thread does not have lock");
 } // if
} // done()
} // class ReadWriteLock

3.5. Producer-Consumer

This design pattern coordinates the concurrent pro-

duction and consumption of information among producer
and consumer objects.

3.5.1. Context

Consider a trouble ticket (bug) dispatching system

scenario. Consumers submit trouble tickets through web
pages. Dispatchers review this information and forward
the tickets to the appropriate person in the organization.

Tickets stay in a queue until dispatchers read them.
Dispatchers read the queue periodically. If the queue is
empty, the dispatchers wait until the first message comes
in.

The system is represented in the Figure 4 below.

7

TroubleTicket

Queue

-arraySize: int = 100
-currentPosition: int = 0

«create» Queue()
-add()
-remove()
+push()
+pull()
+size()

Client

«create» Client()
+run()

Dispatcher

«create» Dispatcher()
+run()

-data

-queue

-queue

Figure 4 Producer-Consumer classes - Trouble Ticket
example

Instances of client (the producer), asynchronously

supply objects (TroubleTicket instances) to the queue.
Asynchronous consumers (dispatchers) read these objects
from the queue whenever they are available. The queue
detaches the producers and the consumers, allowing their
asynchronous indirect communication.

3.5.2. Consequences

Producer objects are detached from the consumer ob-

jects. They produce objects to a queue without the neces-
sity to wait for the consumers response or availability;

When there are objects in the queue, the consumer
can pull the objects immediately, if the queue is empty,
the pull call waits until a new object is pushed by the pro-
ducer.

3.5.3. Code Example

The concurrent access to the pull operation is con-

trolled using a synchronized modifier in this operation.
Below, the main parts of the code are presented. This

code is based on the example of the Figure 4.

public class Queue {

 private ArrayList data = new Array-
List();

synchronized public void push(TroubleTicket
tkt) {
 data.add(tkt);
 notify();
} // push(TroubleTicket)

synchronized public TroubleTicket pull() {
 while (data.size() == 0){
 try {
 wait();
 } catch (InterruptedException e) {
 } // try/catch
 } // while
 TroubleTicket tkt = (Trou-
bleTicket)data.get(0);
 data.remove(0);
 return tkt;
} // pull()

4. The Bandera Toolset

Bandera [CDH+00] is a toolkit for model checking

Java programs. Model checking is an automatic technique
for verifying finite state systems that determines if a
property holds of the given finite state machine (Chapter
1) [CGP99]. In this technique, an exhaustive search is
done in the model states to check if the property holds at
every state.

Model checking, has been showed to be a successful
technology for verifying hardware [WF95]. In fact, hard-
ware manufacturers frequently use them to validate their
designs. Furthermore, it can also be used in software sys-
tems. In the literature we can find papers describing the
checking of: cache coherence protocols used in dis-
tributed file systems [WF95], electronic commerce proto-
cols [HTWW96], and so on.

The Bandera toolset allows users to check static and
dynamic properties in Java programs, allowing the tailor-
ing of the analysis to a select set of properties in order to
minimize analysis time. The Bandera architecture has the
following main features:

- It reuses existing technologies as the model
checkers;

- It Provides automated support for the abstrac-
tions used by experienced model designers; and

- Provides an open design, which can be extended
according to future needs.

4.1. Bandera Architecture

In general, one can say that the Bandera architecture

is similar to an optimized compiler: the input is translated

8

into intermediate representations, which are augmented
with useful information. Bandera uses Java source code
as input that is translated into a Jimple program. This
program is sliced and abstracted and translated into an-
other intermediate representation called BIR (Bandera
Intermediate Representation). Finally, this BIR code is
used to generate a program in the language of one of the
three model checkers currently supported. For example, it
generates output in Promela formal language if the model
checker selected is the SPIN [Hol97] checker. In fact,

Bandera was built on top of the Soot compiler framework
[CDH+00].

Figure 5 presents the Bandera architecture. The main
components of Bandera architecture are the Slicer, the
Abstraction Engine, the Back End and the User Interface.
Each one of these components is briefly described as fol-
lows. More information regarding these components are
presented in the references [CDH+00], [DHR+01] and
[PDW01].

Figure 5: The Bandera Arquitecture

4.1.1. Slicer

The Slicer component is responsible for removing ir-

relevant source code for the checking of a given property.
The slicing criteria are automatically extracted from the
observable predicates that reference variables and predi-
cates in the predicate being analyzed.

The process of slicing is based on the calculation of

the dependency graph, which supports visualization of
data, control and synchronization dependencies. This
dependency graph also helps the process of selecting ab-
stractions. Since all variables in the dependency graph are
important to the property being checked, this information
can be used to select the variables that appear most often
in a checked predicate in order to simplify the checking.

4.1.2. Abstraction Engine

The Abstraction Engine copes with the reduction of

the cardinality of data sets associated with variables. For
example, if the property being verified depends only on
whether or not a particular item is in the vector, instead of

using a large number of vector states, we could use
{ItemInVector, ItemNotInVector}[CDH+00].

Bandera provides a powerful specification language
called Bandera Abstraction Specification Language
(BASL) which can be used to create abstractions. How-
ever, the abstractions must be safe, i.e., they must over-
approximate the set of true executable behavior of the
system checked [DHR+01]. In order to guarantee this
safeness a formal check must be performed. This check-
ing is not a trivial process, therefore most Bandera’s users
can select abstractions from the Abstraction Library pro-
vided by this tool. Therefore, Bandera can be used by
non-experts because it provides abstractions reuse.

The Abstraction Engine supports type inference in
order to check conflicting abstractions [DHR+01]. For
example, if a program with an assignment like “y = z;”
and with “z abstracted with {Neg, Zero, Pos}” and “y is
abstracted with {Even, Odd}” were checked, it would
raise an error. The problem is that if z is a Pos value, it
can not be determined if z is Even or Odd. In a case like
that, Bandera reports the conflict to the user who can ad-
just the abstractions chosen.

It is important to note that slicing and abstractions
are important because they reduce the total number of
states to be checked helping to minimize the “state explo-

9

sion problem”. The idea is that as the number of system
components grows the size of a finite-state model in-
creases exponentially. This is one of worst problem in
applying model checking and it is much more difficult
when model checking is applied to software systems,
because these systems tend to have much more states than
hardware components [CDH+00].

4.1.3. The Back End

At this point, an abstract Jimple program that was

sliced and abstracted replaced the Java source code. This
program will be used as input to the BIRC (Bandera In-
termediate Representation Constructor) which creates a
BIR representation of this program. BIR is a command-
guarded language for describing state transition systems
which also that abstracts the common model checker in-
put language. This output is sent to model checkers spe-
cific translators. For example, the SPIN Translator ac-
cepts a BIR representation and produces a Promela model
of the system.

Finally, the program is executed in the model
checker and if a counter-example is found it is translated
back by the BIR-Jimple-Java Tracer component into the
original source code. Therefore, the user can check the
behavior of his program as in a debugger [CDH+00].

5. Modeling and Checking Patterns

This section describes our experience in specifying

and checking the concurrent design patterns previously
described in Section 3.3.

The approach that we adopted was the following.
First, we implemented each one of the patterns with Sun
JDK1.3. Then, the programs were tested in Bandera in
order to verify their absence of deadlock. After that, in
order to test the Bandera ability to detect concurrency
problems, the concurrency optimizations of this code
were relaxed. In other words, the synchronized modifiers
were removed from the code.

Finally, using the Bandera Specification Language
(BSL) we inserted labels and expressions as javadoc
comments in the source code. It is important to note that
the BSL is very powerful: we created several versions of
the same checking.

This section is organized as follows. For each pat-
tern, we describe the conditions that need to be checked
and the different versions of the checking using BSL as
well as the part of the code annotated.

5.1. Single-Threaded Execution Pattern

The Figure 6 describes this pattern, implemented in

order to be properly parsed by Bandera.
This concurrent design pattern was specially de-

signed to prevent the following two concurrent problems.
(i) Two different instances of TrafficSensor can not
notify the TrafficSensorController object at the same
time. In other words, “If both calls execute at the same
time, they produce an incorrect result. Each call to the
vehiclePassed() method is supposed to increase the vehi-
cle count by one. However, if two calls of this method
execute at the same time, the vehicle count is incremented
by one instead of two.”[Grand98]; and
(ii) The TrafficTransmitter and the TrafficSensor
can not access the TrafficSensorController at the same
time. In both cases, one update will be lost if the de-
scribed situation happens.

The absence of these problems is guaranteed by the
use of the synchronized modifier in the getAndClear-
Counter() and vehiclePassed() operations.

TrafficTransmitter

«create» +TrafficTransmitter()
+setTrafficController()
+run()
-transmit()

TrafficSensor

-sleepTime2: double = 0

«create» +TrafficSensor()
+setTrafficObserver()
+run()
-monitorSensor()
-detect()
-generateRandomLongNumber()

TrafficObserver
«interface»

+vehiclePassed()

TrafficSensorController

-numberOfExecutions: int
-vehicleCount: int

«create» TrafficSensorController()
+vehiclePassed()
+getAndClearCount()

TrafficSensorA

«create» TrafficSensorA()

TrafficSensorB

«create» TrafficSensorB()

TrafficSensorC

«create» TrafficSensorC()

-observer

-controller

Figure 6 Single Threaded Execution Example

5.1.1. First Checking

Using the Bandera tool, we specified a logical predi-

cate against which the model was checked. The predicate
states that the method vehiclePassed() can not be invoked
(is absent) between the invocation and the end (return) of
the method getAndClearCounter(). Since these methods
are not synchronized anymore, this situation could hap-
pen, and therefore Bandera should present a counter-
example. The predicate, in BLS, is described as follows.

checkReadAndWriteAtSameTime2: forall
[s:TrafficSensorController]. {TrafficSen-
sorControl-
ler.vehiclePassed.vehiclePassedIsInvoked(s)
} is absent between

10

{TrafficSensorCotroler.getAndClearCount.
getAndClearInvoked(s)} and
 {TrafficSensorController.getAndClearCount.
getAndClearReturned(s)};

The annotation of the code used in this predicate is

presented as follows.

/**
* @observable
* LOCATION [getAndClearCountCallLocation]
* getAndClearCountCall;
* @observable
* INVOKE getAndClearInvoked;
* @observable
* RETURN getAndClearReturned;
*/
public int getAndClearCount() { (…) }

/**
 * @observable
* LOCATION[vehiclePassedCallLocation]
* vehiclePassedCall: (numberOfExecu-
tions<=1);
 * @observable
 * INVOKE vehiclePassedIsInvoked;
 * @observable
 * RETURN vehiclePassedIsReturned;
 */
public void vehiclePassed()
{ (…) }

5.1.2. Second Checking

Using this same relaxed model, the second checking

specifies that the method vehiclePassed() can not be in-
voked (is absent) after the invocation of the method ge-
tAndClearCounter() until this second method finishes
(returns). Again, these methods are not synchronized,
therefore Bandera should present a counter-example. The
BSL code is presented as follows.

checkReadAndWriteUsingAfterUntil: forall
[s:TrafficSensorController]. {TrafficSen-
sorControl-
ler.vehiclePassed.vehiclePassedIsInvoked(s)
} is absent after {TrafficSensorControl-
ler.getAndClearCount. getAndClearIn-
voked(s)} until {TrafficSensoControl-
ler.getAndClearCount. getAndClearRe-
turned(s)};

The same annotations used in the First Checking

were used in this checking.

5.1.3. Third Checking

This last checking uses a different approach: a vari-
able called numberOfExecutions. This variavle was de-
clared and inserted inside the implementation of the
method vehiclePassed(). It is responsible for counting the
number of clients that are executing the operation simul-
taneously. Hence, a concurrent use of the operation is
detected whenever this counter is greater than one.

The Bandera predicate that checks the code for this
occurrence is presented as follows.

raceConditionWithAttr: forall
[c:TrafficSensorController]
.{TrafficSensorController .lessThanTwo(c)}
is universal globally;

The globally clause specifies that this predicate must

be true in the full scope of the program.
In this example, the numberOfexecutions variable

was incremented and decremented as follows.

public void vehiclePassed() {
 vehiclePassedCallLocation:
 this.numberOfExecutions++;

this.vehicleCount++;
 this.numberOfExecutions--;
} // vehiclePassed()

It is also necessary to present the part of the code re-
sponsible for declaring the variable numberOfExecutions
and the related annotation that describes the expression
about this variable:

/**
 * @observable
 * EXP lessThanTwo:
 (numberOfExecutions <= 1;
 */
class TrafficSensorController implements
TrafficObserver {

private int numberOfExecutions = 0;
 private int vehicleCount;

5.2. Producer-Consumer

The goal of this concurrent design pattern is to avoid
that one “consumer” reads data that it was not produced
yet. In this case, the “consumer” must wait for a “pro-
ducer” to provide some data. When this happen, the “con-
sumer” is allowed to read the data.

This problem can be solved if expressed using the
wait() an the while loop in the class Queue. This class
implements the shared resource where producers add
data, and from consumers read data.

synchronized public TroubleTicket pull() {
 while (data.size() == 0){
 try {
 wait();

11

 } catch (InterruptedException e) {
 } // try/catch
 } // while
 TroubleTicket tkt =
 TrobleTicket)data.get(0);
 data.remove(0);
 return tkt;
} // pull()

Another problem that can happen in this pattern is

the lost of one update, similar to the condition (i) in the
Single-Threaded pattern. In this case, the pattern must
avoid that two producers provide the information at the
same time, because in this case one of the updates would
be lost.

The absence of these problems is guaranteed by the
use of the synchronized modifier in the method:

synchronized public void push(TroubleTicket
tkt) {
 …
} // push

After the specification, these models were checked

with Bandera as described in the next subsections.

5.2.1. First Checking

The first condition can be checked is if we remove

the code responsible for blocking the consumers while
some producer produces some data. In the method pre-
sented above it is reflected as the bold part.

In order to check this program, we can create a pre-
condition that establishes that a consumer can only call
the pull method when a producer already produced some
data. The new code to be tested, as well as the annotation
in the code is the following:

/** @assert
 * PRE dataAvailable: data.size() > 0;
 */
public TroubleTicket pull() {
 while (data.size() == 0){
 try {
 wait();
 } catch (InterruptedException e) {
 } // try/catch
 } // while
 TroubleTicket tkt =
 TrobleTicket)data.get(0);
 data.remove(0);
 return tkt;
} // pull()

The gray code means that this part was removed

from the program during the tests.
Since this is an assertion, there is no need to instanti-

ate it as temporal pattern (absent or universal globally, for

example) as we have been doing in the previous check-
ing.

5.2.2. Second Testing

This test was created to check the second condition,

i.e., if there are two concurrent calls to the method
push(), then one update is lost. In other words, we want
to guarantee that there is just one process executing the
method push all the time.

Here, we used the same approach described in the
third checking of the pattern Single-Threaded. A variable,
called numberOfConcurrentPushes, was created and in-
serted inside the implementation of the method push().
This variable is responsible for counting the number of
producers that are providing data and adding this objects
to the queue simultaneously. Hence, a concurrent use of
the operation is detected whenever this counter is greater
than one.

The Bandera predicate that checks the code for this
occurrence is presented as follows.

lostUpdate: forall
[q:Queue].{Queue.lessThanTwo(q)} is univer-
sal globally;

Again, the globally clause specifies that this predi-

cate must be true in the full scope of the program. The
part of the annotated Java source code that is related to
this checking is presented below:

/**
 * @observable
 * EXP lessThanTwo:
(numberOfConcurrentPushes < 2);
 */
class Queue {
 private int arraySize = 100;
 private TroubleTicket[] data;
 private int currentPosition = 0;

 private int
 numberOfConcurrentPushes = 0;

 public void push(TroubleTicket tkt) {
 numberOfConcurrentPushes++;
 TroubleTicket ticket = tkt;
 add(ticket);
 notify();
 numberOfConcurrentPushes--;
} // push(TroubleTicket)

5.3. Read-Write Lock

The goal of this concurrent design pattern is to coor-

dinate the acquisition of locks and avoid that:
1. Two clients get the write lock at the same time, and

12

2. Prevent the acquisition of read locks from the mo-
ment when a write lock is acquired, until the moment
it is relinquished.

This concurrency problem is implemented by the

code in section 3.4.4. There are three critical sections
guarded by the synchronized clause in the writeLock()
operation, as well as synchronized modifiers in the decla-
ration of the operations readLock() and done().

Using the same idea of the other two patterns, in or-
der to check this pattern, these clauses were relaxed. In-
voke and return expressions are inserted in the headers of
these operations. In order to check the synchronized
clauses inside the operation, we can use the definition of
labels. In Bandera, label conditions become true as soon
as this point of the code is reached. Another approach is
to use variables and counters as in the example in section
5.2.2.

We have to check if two or more concurrent proc-
esses reach a critical section at the same time. If it is pos-
sible to occur, we could reach inconsistent reads and lost
updates.

As the checking expressions are analogous to the
ones presented in the previous subsections, they are not
presented here.

Here it is an example of the user of label inside the

writeLock() operation. The labels inWaitList, waiting and
outWaiting were inserted in the code.

/**
* @observable
* RETURN writeLockReturn;
* INVOKE writeLockCall;
* LOCATION[inWaitList] waitList;
* LOCATION[addingToList] addingList;
* LOCATION[readingThread] readingTh;
* LOCATION[waiting] waitingCond;
* LOCATION[outWaiting]outWaitingCond;
*/
public void writeLock() throws
 InterruptedException {
 Thread thisThread;
 { // previous synchronized(this)
 if (writeLockedThread==null && out-
standingReadLocks==0) {
 inWaitingList:
 { writeLockedThread =
Thread.currentThread(); }
 return;
 } // if
 readingThread:
 thisThread =
Thread.currentThread();
 addingToList:
 waitingForWrite-
Lock.add(thisThread);

 } // synchronized(this)
 { // previous synchronized (thisThread)
 while (thisThread != writeLock-
edThread) {
 waiting:
 thisThread.wait();
 } // while
 } // synchronized (thisThread)
 { // previous synchronized (this)
 int i = waitingForWrite-
Lock.indexOf(thisThread);
 outWaiting:
 waitingForWriteLock.remove(i);
 } // synchronized (this)
} // writeLock

In this relaxed code, suppose the example in which

two threads call writeLock() at the same time. If the write
lock is already taken, they skip the first if guard. The
thisThread variable is updated by one thread and, is
modified, just after, by the other thread. The result is that
only one thread is inserted at the waiting list, instead of
two of them.

This situation can be detected with the following ex-
pression:

lostUpdate: forall
[q:ReadWriteLock].{ReadWriteLock.readingTh(
q)} is absent
after {ReadWriteLock.readingTh(q)}
until {ReadWriteLock.addingList(q)}
 globally;

In a similar way, other expressions can be composed.

6. Experiences using Bandera

This section describes the experience of the authors us-
ing the Bandera toolset. Basically, there are three subsec-
tions: problems identified, results and the features that we
identified as promising in Bandera.

6.1. Problems Identified

We had many different problems with the parser
used in Bandera. These problems were reported to the
support group of Bandera, but up to now, we did not have
any answer from them. These problems are briefly de-
scribed below:

1. All source code must be in a unique file in order to

be read and parsed by the Bandera. This approach
seems to compromise the modularity of the code, and
hinders the scalability of the tool for big Java pro-
grams.

2. Some classes that are declared in the code, but are
not instantiated, generated a parsing error. Surpris-

13

ingly, abstract classes are supported.
3. The tool did not properly parse some classes from the

package java.util such as ArrayList, found in the im-
plementation of two of the design patterns analyzed.
The Bandera also did not recognize the invocation of
operations as vector.size() when vector is a
java.util.Vector instance.

4. In some cases, the use of variables passed as parame-
ters to methods generates errors in the parsing. For
example, if we invoke the method sleep(globalVar)
in a subclass of Thread, where globalVar is a global
variable, the parser produces a parsing exception.

5. The static invocation of operations as
Thread.sleep(Math.random()*100), used in our ex-
amples were not parsed.

Due to these problems, the patterns had to be rewrit-

ten several times in order to overcome these limitations of
the tool. Special care was taken in order to keep the se-
mantic of the examples after these changes. For example,
in the Producer-Consumer example, instead of using the
java.util.ArrayList class, we defined an alternative array
of TroubleTicket objects.

Furthermore, since the tool does not handle correctly
multiple instances of the same class, we had to define
many subclasses of TrafficSensor, as described in Figure
6. This approach was inspired in the examples provided
in the Bandera manual [MT01], in which class declara-
tions are repeated in order to define many class types,
with different names, but with similar implementation.

In fact, the following patterns were not tested: (i) the
Read-Write Lock pattern was not tested because its im-
plementation uses a static call:
Thread.getCurrentThread(); and (ii) the Producer-
Consumer pattern was not tested because, after several
tests, we were still not able to rewrite the code “prop-
erly”, to be successfully parsed by Bandera.

During this rewriting phase, one could add errors to
the code. Therefore, in order to avoid that each time we
rewrote the code, we checked it with the JDK1.3 envi-
ronment. Note that we are not claiming that this process
was fault-tolerant or without errors, instead we are saying
that we tried to avoid this problem. In fact, this is one of
the limitations of our approach: the best solution is to
formally prove that the programs are semantically equiva-
lent.

Another problem identified was the Slicer. Although
very useful in removing irrelevant parts of the code, it can
also slice parts of the program that are essential for its
execution. For example, it can slice classes that are part
of the main method and are responsible, for example, for
the instantiation of the main trhreads of the program to be
analyzed. In this case, the model check results in success
since the code analyzed does not have all the objects and

the properties of the original one.
Bandera allows the specification of temporal logical

predicates using templates. These templates are not sim-
ple and, sometimes, do not allow expressing simple
statements. For example, we would like to check if two
methods are called at the same time. The INVOKE anno-
tation specifies that the following condition is true when
the method is invoked. Then, we would like to be able to
do something like:

/** @ observable
 * INVOKE firstMethodCalled;
*/
 public void firstMethod() { … }

/** @ observable
 * INVOKE secondMethodCalled;
*/
 public void secondMethod() { … }

/** @observable
 * EXP BothMethodsCalled:
(firstMethodCalled && secondMethodCalled);
*/

However, we can not express this predicate because,

there is not the temporal logic pattern supported by Ban-
dera that could express this idea of simultaneous execu-
tion of operations.

6.2. Results

In this session we summarize our experience using
Bandera and present some of the results we obtained.

Bandera seems to be a very powerful tool, however,
one of the main claims of the authors, that they solve the
semantic gap between artifacts and tools is still not true.
The JJJC parser was not able to properly parse all the
design patterns specified in Java, without modifications
in the source code. Due to this problem, our code had to
be modified many times, making this process of specify-
ing existing code, a non-trivial task.

Due to the use of advanced techniques inside the
Read/Write Lock code as invocation of static operations,
we were not able to modify this example and, at the same
time, keep the original semantic of the application. The
use of the static invocation did not let us parse this code,
although it was successfully compiled by the JDK1.3.

The Read/Write lock example and the Producer-
Consumer could not be parsed in the non-sliced mode.
The system generated a runtime exception during the
model checking, which could be a result of an error in the
conversion of the internal JJJT compiler to the formal
language of the SPIN model checker.

The main results of our experiments are presented in
Table 1 as follows:

14

 SingleThrea
dedExecu-
tion

Read/Write
Lock

Producer-
Consumer

Parsed Without
Modification

No No No

Parsed With
Modification

Yes No Yes

Success Checked
W/O Code Slicer

Yes No No

Success Checked
With Code Slicer

Yes No Yes

Detected Coun-
terex. W/ Slicer

Yes No No

Detected Coun-
terex. W/O Slicer

No No No

Table 1 A Summary of the results ruining the tests in the
models.

We believe that many of the errors found during the

execution of the tests presented in this paper, was a result
of the immaturity of the tool. Bandera is still in 0.428 pre-
alpha version.

According to [MT01], 600 property specifications
were studied for this project: 94% were instances of the
patters, in which 70% of the properties were ‘universal’
or ‘response’ properties. Our experience shows that these
Bandera templates allow the specification of many tem-
poral logic predicates. However, they are not simple to
define and, to the extent of our knowledge, do not allow
the expression of simple statements as the simultaneous
execution of processes.

The authors also claim that Bandera was used to
specify many systems, as a Java version of a space-craft
control system, a scheduler for real-time systems, a ge-
neric framework for implementing multithreaded staged
calculations and so on. In these examples, it identified
some faults in some of the applications, but not identified
seeded faults in others. This is in concert with our experi-
ence since Bandera was not able to produce counterex-
amples to the majority of our models.

6.3. Bandera Features

Despite of the errors found during the execution of

the Bandera toolset, the tool presents several important
features that will be discussed below.

One important feature provided by Bandera is its lan-
guage for specifying abstractions is BASL. This language
supports the specification of pre and post conditions, as-
sertions and temporal properties for defining predicates
using common Java control points and events (such as
method invocation and return). It also allows the defini-
tion of expressions using Java code variables. In fact, we
could express the checking for the Single-Threaded pat-

Threaded pattern in three different ways: sections 5.1.1
and 5.1.2 present two of three ways.

On the other hand, according to the Bandera’s au-
thors [MT01], “although temporal logic, such as LTL and
CTL, are theoretically elegant, practitioners and even
researchers sometimes find it difficult to use them to ac-
curately express the complex state and event sequencing
properties often required by software.”. We completely
agree with this position and, perhaps, that is the reason
why we had problems using the temporal patterns pro-
vided by Bandera (see section 6.1.1). The process of
compilation from the source code annotation, together
with the program logic expressed by the Java code was
not always successful. Many parsing and model checking
errors were detected, some of them, related to the transla-
tion of the Bandera’s intermediate language, Jimple, to
the Promela language. If the Bandera user interface did
not obligated us to use their specific temporal patters,
perhaps, we could have been successful specifying and
checking the properties of the concurrent patterns.

7. Conclusions

This paper presents the validation of three different
concurrency design patterns. The patterns were imple-
mented in Java and were extracted from [Grand98], while
the validation was performed using the Ban-
dera[CDH+00] toolset. Bandera supports the verification
of properties specified in its specification language using
model checking. Slicing and abstraction are provided in
order to reduce the problem of state space explosion.

Unfortunately, our results were not useful since the
version of Bandera that we used had several problems. In
fact, we could not run tests in one of the three design pat-
terns and in another one, we just could run partial tests.

The approach presented in this paper can be applied in
other patterns using other model checkers like JavaPath-
Finder or SAL. We argue that the checking of design
patterns can validate the advantages claimed by them. It
also can help to increase the adoption of other patterns.

8. References

[ACL96] P.S.C. Alencar, D.D. Cowan and C. J. P. Lu-

cena. A formal approach to architectural design pat-
terns. In FME’96: Industrial Benefits and Advances
in Formal Methods (Eds. M.C. Gaudel and J. Wood-
cook), pp. 576-594, Springer-Verlag LNCS 1051,
1996.

[Alexander79] C. Alexander. The Timeless way of

15

Builtind. Oxford University Press 1979.
[BMRSS96] Franch Buschmann, Regine Meunier, Hans

Rohnert, Peter Sommerland, and Michael Sal. A Sys-
tem of Patterns. Chichester, U.K.: John Wiley &
Sons, 1996.

[CDH+00] Bandera : Extracting Finite-state Models from
Java Source Code, James Corbett, Matthew Dwyer,
John Hatcliff, Corina Pasareanu, Robby, Shawn Lau-
bach, Hongjun Zheng in Proceedings of the 22nd In-
ternational Conference on Software Engineering,
June, 2000, pages 439-448.

[CDH00] Bandera: a source-level interface for model
checking Java programs, Corbett, J.C.; Dwyer, M.B.;
Hatcliff, J. in Proceedings of the 22nd International
Conference on Software Engineering, June, 2000,
pages 762-765.

[CGP99] Edmund M. Clarke Jr., Orna Grumberg and
Doron A. Peled. Model Checking, MIT Press, Cam-
bridge, Massachusetts, 1999.

[DHR+01] Tool-supported Program Abstraction for Fi-
nite-state Verification, Matthew Dwyer, John Hat-
cliff, Robby Joehanes, Shawn Laubach, Corina
Pasareanu, Robby, Willem Visser, Hongjun Zheng.
in Proceedings of the 23rd International Conference
on Software Engineering, May, 2001.

[Gamma94] Erich Gamma, Richard Helm, Ralph John-
son, and John Vlisides. Design Patterns: Elements of
Reusable Object-Oriented Software. Reading, Mass.:
Addison-Wesley, 1994.

[Grand 98] Grand, Mark. Patterns in Java: a catalog of
reusable design patterns illustrated with UML, Wiley
Computer publishing: John Wiley & Sons. Inc, 1998.

[Hol97] Gerard J. Holzmann. The Model Checker SPIN.
IEEE Transactions on Software Engineering
23(5):279-295, May 1997.

[HTWW96] Nevin Heintze, Doug Tygar, Jeannette
Wing, and Hao-Chi Wong, Model Checking Elec-
tronic Commerce Protocols, Second USENIX Work-
shop on Electronic Commerce, 1996.

[Larmann98] Crig Larman, Applying UML and Patterns,
Upper Saddle River, N. J.: Prentice Hall PTR, 1998.

[Lea97] Dough Lea. Concurrent Programming in Java.
Reading, Mass.L Addison-Wesley, 1997.

[MT01] J. Matcliff and O. Tkachick. The Bandera Tools
for Model-cheking Java Source Code: A User’s
Manual. March 7, 2001.

[PDW01] Finding Feasible Counter-examples when
Model Checking Java Programs, Corina S. Pasare-
anu, Matthew B. Dwyer and Willem Visser, submit-
ted to TACAS'2001.

[WF95] Jeannette M. Wing and Mandan Vaziri-Farahani,
A Case Study in Model Checking Software Systems,
Foundations of Software Engineering Conference,
1995.

