
1

Mobile Agents and Software Deployment

Roberto Silveira Silva Filho,
ICS -Information and Computer Science, UCI - University of California Irvine

444 Computer Science Building, University of California
Irvine, CA 92697-3425, USA
e-mail: rsilvafi@ics.uci.edu

Abstract
Software deployment is a complex procedure that
evolves the release, installation, adaptation, recon-
figuration, update, activation, deactivation, retire-
ment and remove of software in a set of sites. This
paper presents and describes some ideas concerning
the use of the mobile agents as a promising para-
digm to support this important software engineering
activity. The use of workflow is also presented as a
coordination tool for expressing large-scale soft-
ware deployment activities.

Key Words: Mobile Agents, Software Deployment,
Configuration Management, Workflow and Distrib-
uted Systems.

1 Introduction

The objective of this paper is to propose some

ideas concerned the use of mobile agents and work-
flow in the software deployment research area. Few
publications addressed this problem using the mo-
bile agents paradigm and none of them, according to
the author knowledge, used the idea of workflow to
express conditions and coordination in large-scale
software deployment. This paper proposes some
ideas and possible solutions in this area using the
mobile agent paradigm and workflow.

This paper aims at answering the following ques-

tions:

How mobile agent paradigm can be used in the

context of configuration management, runtime
change and software deployment?

How workflow management systems can be used

to express dependencies in large-scale software de-
ployment?

1.1 Paper Description

The next section discusses, in a summarized way,

the basic concepts related to software deployment,
mobile agents and workflow Section 3 discusses the
use of the mobile agent paradigm in the context of
software deployment activities and its requirements.
Section 4 proposes the use of workflow management
as one solution of the coordination problem in soft-
ware deployment. Section 5 presents the Software
Dock as a related work. Finally, in section 6, some
conclusions are posted.

2 Basic Concepts

In this section, there are introduces the basic con-

cepts used in the comprehension of this paper. In
special, we introduce the concepts of configuration
management, software deployment and mobile
agents and workflow.

2.1 Software Deployment

Software applications are not stand alone sys-

tems, they are implemented as a set of software
components, data and executables, being developed
to operate in a constantly changing environment.
Additionally, in order to reach a broader consumer
market, the software must be compatible with differ-

2

ent operating systems and its versions, besides of
being able to run on different hardware platforms. In
this heterogeneous environment, each host in a net-
work can have different hardware and software con-
figurations.

The software deployment process, for these sys-

tems, is becoming complex. These new applications
demand new installation procedures and polices.
Software producers distribute customizable and not
complete applications. Before the installation, the
system must be checked for the presence of required
software component versions. In case they are not
present, components from different vendors may
need to be gathered and installed. This process usu-
ally evolves the query of different vendor sites dis-
tributed in the Internet.

Examples of such complex applications are mod-

ern Internet browsers. These applications are de-
ployed with a minimum set of plug-ins. Whenever
one of these components are required for a specific
functionality, embedded in the Internet homepage,
the consumer (client), in which the application is
installed, usually needs to download this plug-in
from its producer company home page.

Another example is the installation of operating

systems in new workstations. It is usually the case
that new drivers, not available in the distribution, are
required.

This process introduces new requirements, which

are discussed in section 2.1.3.

2.1.1 Definition

According to Carzaniga et al. [CFHHHW98], in-

formally speaking, the term software deployment
refers to all the activities that make software systems
available for use. Software deployment compre-
hends the process and activities related to the re-
lease, installation, activation, adaptation, deactiva-
tion, update, removal and retirement of software
components in a set of hosts. It requires interactions
among software producers and software consum-
ers. Once deployed, a software system is available
for use in a customer site.

For now on, we will use the following terminol-
ogy, described by Carzaniga et al, as follows.

A site may be a host or set of hosts that uses a set

of resources. A software system is a coherent col-
lection of artifacts, such as executable files, source
code, data files and documentation. A resource is
anything needed to enable the use of a software sys-
tem at a site, for example, and IP port, memory, disk
space and other system. A software producer is a
company or site that creates and deploy new releases
of the software to be installed. The software con-
sumer is the host in which the software needs to be
deployed to.

The software deployment process is composed by

8 main phases. In the next sections, these phases will
be described and some software deployment re-
quirements will be discussed.

2.1.2 Software Deployment Process

The deployment process consists of several inter-

related activities that can be executed in the pro-
ducer, consumer or both sites. These activities are
release, installation, activation, adaptation, deactiva-
tion, update, removal and retirement. We will now
describe these phases as presented by Carzaniga et
al.

• Release. It is the activity that interfaces be-

tween the software development and its de-
ployment. It is performed in the producer side
and encompasses all the operations needed to
prepare a system for assembly and transfer to
the consumer site. It collects and specifies all
information necessary to carry the other ac-
tivities of the deployment process. It is di-
vided in the packing and advertising sub-
phases.

In the packing phase, all components neces-
sary to the application are collected and or-
ganized, in order to be transferred to the con-
sumer sites. Such information comprises the
components, documentation, its installation
procedures, dependencies and management
properties.

3

In the advertising phase, meta-information
about the characteristics of the system being
deployed is collected and disseminated to in-
terested parties.

• Installation. It covers the transfer of the ap-

plication components form the producer site
to the consumer site, followed by their con-
figuration. It prepares the system to be acti-
vated.

• Activation. It is the activity of running the

installed application in the customer site. For
complex systems it might require the initiali-
zation of other services and process. An ex-
ample is a network application that needs the
appropriate network daemon to be running in
the UNIX system. If the required applications
are not properly installed in the system, this
lack can trigger an installation process of
these applications.

• Deactivation. Is the inverse of activation ac-

tivity. It performs the shut down of the run-
ning application. It is also required before
other deployment activities can take place, for
example, during update operations.

• Update. It is a special case of installation.

Represents the partial or total transfer of new
component versions, in order to replace com-
ponents of an existing installation. Before in-
stallation, most applications require the deac-
tivation of the software. Some of them, how-
ever, allow this process to be performed at
runtime.

• Adaptation. Like the update activity, the ad-

aptation involves the modification of a soft-
ware system that has been previously in-
stalled. Adaptation differs from update in that
the update activity is initiated by remote
events, such as software producer releasing a
new component version, whereas adaptations
are initiated by local events, such as a change
in the environment of the consumer site. For
example, the installation of a new graphic
card may require the system do adapt to its
new characteristics.

• De-installation. This activity consists in the

removal (undo) of the application compo-
nents from the system. As a result, the re-
move process must inspect the current state of
the consumer site. This procedure must not
affect other installed systems, and dependen-
cies check must be performed in order to keep
components that are shared with other appli-
cations.

• Retirement or Derelease. Consists in discon-

tinuing the support for an application by the
software producer. It usually requires that the
withdrawn of the software by the producer be
advertised to all known consumers of the sys-
tem. It does not directly affect the consumers,
which can continue to use the software.

In summary, the producer side is responsible for

the release and retirement of the software, while the
consumer side performs the activation, deactivation
and adaptation of the software. The update and in-
stallation is a conjunct operation, performed by both
sides.

2.1.3 Issues and Requirements

Carzaniga et al. also presents a list of issues con-

cerned to the software deployment process. The
most important ones for this work are described as
follows.

Change Management. Activities such as soft-

ware and hardware updates are natural and should
be supported by the deployment process. The update
and adaptation procedures must be able to deal with
issues like new hardware and OS upgrades.

Component Dependencies. A non-trivial system

is composed by many components exhibiting vari-
ous interdependencies. A dependency is any kind of
"use" relation among components. The deployment
process must be able to deal with these dependen-
cies, especially during installation and de-
installation procedures. Installation may also depend
on the existence of other applications and compo-
nents. For example, a package may need a zip tool

4

in order to be unpacked. This tool needs to be previ-
ously installed in the system. De-installation should
be carefully implemented in order not to remove
shared components, used by other applications.

Coordination. In client-server distributed sys-

tems, it is usually the case that updates or deploy-
ment activities performed in the server, must be fol-
lowed by updates in the clients. This process usually
has to be coordinated. For example, it is usually the
case that the clients need to shut down before the
server update. Other example is the schedule of up-
dates and adaptations to hours in which the system is
less used. In order to cope with this requirement,
mechanisms to provide these kinds of coordination
should be provided.

Large-scale Content Delivery. The process of

transferring software packages from the producers to
the consumers is called content delivery. Mecha-
nisms and polices that allow the efficient transfer of
this data must be supported, especially in wide-area
networks as the Internet, in which the low band-
width can be a problem.

Heterogeneity. Current computer networks are

composed of hosts executing different operating sys-
tems over a variety of hardware platforms. The de-
ployment process must consider these differences,
allowing the correct specification of component de-
pendencies. Different software versions must be de-
ployed to different hardware and software
configurations, and the deployment process must be
able to run on them.

Deployment Process Changeability. In general,

most deployment activities execute at the consumer
site, make use of system resources, and often require
privileged access to system components. The system
must be able to provide information about what is
being executed and what is being changed during
the deployment activities. This is usually imple-
mented using logs and notification services.

New security polices, for instance, can be speci-
fied by the administrators in order to prevent im-
proper changes in the system. The ability to change
both, the polices associated to the software deploy-
ment and the procedures evolved in this process,
must be supported.

Integration with the Internet. The Internet is a
natural media for deployment, advertisement and
integration of software components. The deploy-
ment process and technology must be tightly inte-
grated with the Internet protocols and standards. For
example, components can be deployed from differ-
ent sites interconnected by the Internet. Systems can
be configured to be automatically updated and use
on-line support databases, which can be accessed
using a browser interface.

Security: Privacy, Authentication and Integ-

rity. With the increasing use of Internet as a de-
ployment media, some security issues arise. Soft-
ware components and sensitive customer’s data are
being transmitted through public network links. This
data should be deployed in a secure way, using SSL
for example, to ensure its integrity and privacy. Ad-
ditionally, since the installation routines usually
have access to special system resources, properties
and databases, the execution of the deployment ac-
tivities must be monitored. Routines to check the
proper software execution can also be applied.

2.2 Mobile Agents

In this section, the mobile agent paradigm is in-

troduced. Some definitions, examples and compari-
sons are also presented.

2.2.1 Definition

In computer science the term agent can be associ-

ated to many different concepts, as in artificial intel-
ligence and user interface. In general terms, a soft-
ware agent can be defined as a program that works
on behalf of its owner [GHNCSE97].

In this paper, we are concerned with the mobile

software agents. The mobile agents research is being
concentrated in areas such as (telecommunication)
network management, electronic commerce, load
balancing, fault tolerance and mobile computing. In
this context, Rus et al. [RGK97] defines a mobile
agent as an object that migrates through many hosts
in a heterogeneous network, under its own control,
in order to perform tasks using resources of these
hosts.

5

2.2.2 Mobile Agents versus Client-Server

Mobile agents are autonomous entities, independ-

ent from the applications that generated them. They
can move along system hosts following a predefined
plan (script), performing activities on behalf of its
agent owner, or can use environment information, as
network link load and a resource location, to guide
their migration process and accomplish their mis-
sion. They carry their own state during migration
and do not keep permanent connections with their
home sites.

In the client-server paradigm, owners of a re-

source (servers) are usually physically distant from
its users (clients). The communication between cli-
ent-server is performed through message exchange
(typically remote procedure calls) conveyed through
a computer network. On the other hand, in the mo-
bile agents paradigm, a software agent moves to the
place where the resource(s) is(are) located in order
to interact locally.

Compared to a client-server centralized system,

the use of mobile agents carrying their own data
does not reduce the overall traffic of data in the net-
work. In both cases, data or part of the data must be
copied locally, in the client hosts. The decentralized
model, however, distributes the data traffic over the
local network, unloading the central server back-
bone. The traffic is not client-server centric but peer-
to-peer centric. The decentralization of data and
control also distributes the server processing and
communication among client hosts [SWME00].

2.2.3 Applications

The literature [CHK94; KT98, RGK97] describes

many applications that can benefit from the use of
the mobile agent paradigm. Some examples are de-
scribed as follows:

• Mobile computing: In applications evolving

mobility, the presence of a network connec-
tion is intermittent, or has variable bandwidth
rates [RGK97]. Mobile agents can migrate to

mobile hosts, perform their activities and
move out when the network connection al-
lows to.

• Fault tolerance and Load Balancing: Tasks

and processes can be split in small sub-
processes in order to perform their goal.
These subtasks can be configured to migrate
form host to host in order to distribute proc-
essing load or can be duplicated providing
fault tolerance. The agent can also operate in
the host independently form network connec-
tion, allowing temporary absence of it.

• Electronic Commerce: Mobile agents, acting

as customers, can be configured to move
through different nodes from a network in or-
der to perform commercial transactions on
behalf of its owner. The agents can search for
certain kind of product or service, compare its
prices and perform purchases and orders on
behalf of its owner.

• Distributed System Management: Mobile

agents can move through hosts in a distrib-
uted system, collecting management data
(passive management) or reconfiguring nodes
in order to implement different management
polices (active management).

The use of mobile agent paradigm in configuration
management, in special, software deployment, is a
new field of study. An example of use of this para-
digm in software deployment is described by Hall et.
al [HHHW97], in the Software Dock system, de-
scribed in section 5.1.

2.2.4 Mobile Agent Systems

A Mobile Agent Systems (MAS), or Agency, is a

computational framework that implements the mo-
bile agent paradigm, providing services and primi-
tives that help in the implementation, communica-
tion and migration of these components. Some ex-
amples of such systems are ObjectSpace Voyager
[ObjectSpace97] and IBM Aglets [KLO97]. A more
detailed description and comparison among this ad
other systems can be found in [KT98].

6

Due to the mobility requirement, the agent is gen-
erally implemented using interpretable programming
languages. The Voyager framework, for example,
uses the Java language. This characteristic also al-
lows the implementation of security policies, in
which the local access to resources can be limited.
An example of this system is the Java sandbox, pro-
vided in the most popular Internet browsers. The
sandbox is a restrict Java runtime environment that
allows the execution of applets, mobile Java applica-
tions that are downloaded with web pages code.

2.2.5 Advantages and Requirements

According to Harrison et al. [CHK94], the ability

to migrate among distributed systems host provides
many benefits to the mobile agent paradigm. Among
them we can list:

• Local agent-host interaction, reducing the

bandwidth use of the network;
• Support for thin clients, with short computa-

tional power, or with scarce resources;
• Facility to implement semantic routing, as the

example of workflow applications;
• Support for scalable applications ; and
• Improvement of fault tolerance to network

link failures.

On the other hand, the mobile agent paradigm has

some disadvantages, which introduces some re-
quirements as follows:

• Need for secure execution environments, with

more severe access restrictions, in order to pre-
vent malicious agents detection (virus);

• Performance limitations due to the use of secu-
rity polices and interpreted languages;

• The communication and processing overhead
associated to the migration of the agents.

Harrison et. al argues that, if considered all posi-

tive and negative points, the mobile agent paradigm
provides an open and generic framework for distrib-
uted application development. Even though none of
these characteristics are exclusive from the mobile
agent paradigm, these aggregate set of benefits are
hardly implemented by other paradigms as the cli-

ent-server.

2.2.6 Current Software Deployment Tools

Currently, a wide variety of technologies exist to

support various aspects and activities of the software
deployment process. In this section a brief summary
of these technologies will be described

Installation Tools. These tools generate a set of

executable and artifact files that must be down-
loaded or provided via a distribution media like a
CD, or via Internet. These files can be compressed
in a single installation executable file. In order to
install the system, the installation software needs to
be executed in the customer site. One example of
these tools is the InstallShield installation tool [In-
stallShield] that generates a self-extractor file that
manages the installation and des-installation proce-
dures of an application.

These tools are usually platform specific, and al-
low a minimal degree of configuration on what
components to install.

Package Managers. These installation tools use

the concept of packages. A package is an archive
that contains the files that constitute a system to-
gether with some meta-data describing the system.
The packages have to be copied to the customer site
in order to be installed. Some package managers
provide file transfer capabilities. Once in the system,
the package is installed by the package manager.

These tools usually do not provide activation and
deactivation capabilities and some of them allow a
primitive police specification. An example of a
package tool is the Red Hat RPM [BIJORD95].

Application Management Systems. These kinds

of systems generally support all of the life cycle ac-
tivities except the producer-side release activity.
Their architecture is generally centralized. These
systems were designed to manage the software de-
ployment in large or medium organizations that
both, produce and consume software. In these sys-
tems, a central server typically controls all manage-
ment and deployment activities. An example of such
application is the System View from IBM [IBM98].

7

2.3 Workflow and Workflow Management
System

In this section, a brief introduction to workflow

and workflow management system is presented.

2.3.1 Definition

Workflows are computer interpretable descrip-

tion of activities (or tasks), and their execution or-
der. The workflow also describes the data available
and generated by each activity, parallel activities,
synchronization points and so on. This description
may also express constrains and conditions such as
when the activities should be executed, a specifica-
tion of who can or should perform each activity, and
which tools and programs are needed during the ac-
tivity execution [JB96]. The basic workflow termi-
nology is described by the Workflow Management
Coalition [WFMC96].

Workflow Management Systems (WFMSs) are

used to coordinate and sequence business processes,
such as loan approval, insurance reimbursement, and
other office procedures. These processes are ex-
pressed as workflows.

2.3.2 Example of WFMS

The WONDER (Workflow ON Distributed En-

viRonment) architecture [SWME00] defines a
WFMS that addresses, in special, the scalability and
availability issues. The architecture is based on the
mobile agent paradigm. the case is represented as a
mobile agent that migrates from user host to user
host, following the process definition. The case is
implemented as a mobile In the WONDER architec-
ture, the control, the storage of data, and the execu-
tion of the activities are all distributed over the hosts
of an enterprise computer network.

The EVE Workflow [GT98] is a WFMS based on

a persistent event middleware, the EVE. It was de-
veloped by Geppert et al. in the Zürich University. It
is based in the Broker/Service model [TGD97], that
allow the activation of services based on events.
Brokers, distributed by hosts in a network. These

brokers implement the workflow activities. The
communication is performed using events, ex-
chenged through distributed EVE servers.

3 Mobile Agent Paradigm and Software
Deployment

The software deployment process requires the

move and configuration of artifact files from the
software producers to the software consumers. This
deployment process must be able to properly adapt
and configure the software to the current characteris-
tic of a host in which the software will be installed.
This process requires close interaction with the cus-
tomer sites in order to adjust the system to it current
configuration.

3.1 Mobile Agents Versus Installation
Tools

The mobile agent paradigm allows both, the

transportation and execution of the installation soft-
ware in a more customizable way. Instead of provid-
ing all the installation files at once, in one single
package, the mobile agent can be programmed to
request the installation files according to the current
configuration of the system, downloading only the
necessary components. Furthermore, the mobile
agent can be easily updated and managed, guaran-
teeing that the most recent installation procedure is
executed.

3.2 Software Deployment Requirements

In this section, the use of mobile agent paradigm

will be discussed with their benefits and drawbacks
compared to some of the software deployment re-
quirements described in section 2.1.3.

Large-scale Content Delivery. The agents can

optimize the process of transferring the software
application components. Based on the local descrip-
tion of the customer site, the agents can request only
the necessary artifact components from the con-
sumer host, preventing the transfer of already in-

8

stalled components.
Mobile agents are autonomous per-to-peer enti-

ties. During a large-scale delivery of software com-
ponents that can communicate with each other, the
agents can be configured to exchange artifacts be-
tween other agents in close hosts, avoiding the use
of a (possible) slower link with the customer site. A
peer-to-peer data transfer police was implemented in
the WONDER project described in [SWME00].

Heterogeneity. The use of interpreted languages,

as Java, by the MASs, allows these systems to cope
with the hardware heterogeneity. The same installa-
tion software (the mobile agent) can be executed in
different hardware/software platforms. After reading
the local configuration, the mobile agent can request
the specific component files, for the current operat-
ing system or hardware platform, to be transferred
from the software producer(s).

Integration with the Internet. Current MASs, as

the Voyager and Aglets, are implemented in Java
and can communicate using RMI or CORBA. These
protocols are implemented as middleware layers on
top of standard Internet protocols.

Security and Deployment Process Change-

ability. The security restrictions and polices usually
associated to the mobile agent paradigm are very
similar to the ones of the software deployment. A
MAS usually provides an agent execution environ-
ment, or agency, which hosts the execution of the
mobile agents, and provides implements the inter-
face between these agents and the host system. The
deployment of software as a mobile agent allows the
system to monitor installation procedures, using the
agency resources, preventing illegal operations in a
more reliable way than the execution of a stand-
alone executable installation package.

For being mobile and generated over demand, the
mobile agent script can be modified at deployment
or at execution time. This change flexibility can be
used to provide runtime change of deployment po-
lices, for example, and to provide current changes in
the deployment activities.

Push and Pull. The mobile agent paradigm al-

lows the installation process to be either pull or
pushed by the software consumer. In the pull ap-
proach, in response to an event, the agent can mi-

grate from the producer site to the customer site,
providing the installation data. On the other hand, an
update in the consumer site, can result in the push of
the agent to the server side, in order to provide the
new components.

The component dependencies and the change

management requirements are implemented as part
of the deployment language. It is an internal aspect
of the mobile agent script. The software Dock pro-
ject addresses this problem defining a special lan-
guage. This system will be described in section 5.1

3.3 Disadvantages

One disadvantage of the use of mobile agent

paradigm is the need of a network connection, at
least during the time necessary to the agent migrate
to the customer site and collect all artifacts for the
installation. After that, the mobile agent can be con-
figured to perform the installation process without
the network connection presence.

Another drawback related to the network use, if

compared to the other delivery media, is the lower
speed of current Internet connections. This problem,
however, can be worked around with the use of a
hybrid police. For example, a shared installation
repository can be used in a local network, from
where the installation takes place. The remote trans-
fer is performed only once, after that, the installation
of the software in the other hosts can use the local
high speed LAN bandwidth. This approach is used
by the Software Dock System described in section
5.1.

4 Coordination in Software Deploy-
ment

This section discusses the use of workflow and

workflow management systems integrated with the
mobile agent paradigm to provide the coordination
requirement presented in section 2.1.3.

In order to express temporal and interdependence

relations, the software deployment process can be
expressed as a workflow. In such approach, the se-

9

quence of activities to be executed, for example,
shut down of the client hosts, update of the server
and restart of the system can be expressed as a set of
consecutive and parallel activities.

An example of the use of a workflow in the mo-

bile agent paradigm is the WONDER project, in this
system, the mobile agents are represented as activi-
ties that coordinate their own execution and the
creation of the subsequent activities. Each mobile
agent follows a predefined plan, expressing the
whole process.

In order to be used by the software deployment

systems, these inter-activities dependencies must be
expressed in the installation script language.

The Application Management Systems described

in section 2.2.6, addresses this problem in a central-
ized fashion, using events to notify and control the
software consumer hosts. The mobile agent ap-
proach, however, allows addressing of this problem
in a decentralized way. Mobile agents are autono-
mous entities and can be programmed to coordinate
other agents.

For example, in a server update procedure, a set

of parallel agents could be deployed in the network,
they would migrate, each one, to a host in the sys-
tem and deactivate the software that could be af-
fected by the server modification. A synchronization
activity is defined in order to receive notifications
from the clients, informing about the program deac-
tivation. After that synchronization (and join), the
server update agent is executed. When the update is
complete, new parallel agents are deployed in order
to activate the client programs. These agents can be
generated by the agent, which executed the update.

Once created, the agents can follow a predefined

script in order to be independent from the software
producer site. Once in a client host, the agent re-
quests the appropriate software components from the
software producer, which, in this case, works as a
software artifact repository.

5 Related Work

There are few approaches in the research litera-

ture that addresses the problem of software deploy-
ment using the mobile agent paradigm. During the
writing of this paper, the only system that provided
such facility, and was known by the author, was the
Software Dock project, described as follows.

This section describes the software Dock System,

providing some comments and suggestions at the
end.

5.1 Software Dock

The Software Dock, developed by Hall et al.
[HHHW97], uses the mobile agent paradigm for
software deployment. It defines two main compo-
nents: the release dock, representing the software
producer, and the field dock, representing the soft-
ware consumer. The mobile agents perform specific
software deployment activities between these two
components.

5.1.1 Main Components

The release dock works as a release repository

for the software systems provided by the software
producer. There is one release dock per software
producing organization. The release dock provides a
web interface in which users can select software ver-
sions and components to update.

Within the release dock, each software release is

described using standard deployment schema. Each
software release is accompanied with generic agents
that perform the software deployment activities by
interpreting the description of the software release.

The release dock advertises the field docks when

new updates and changes are performed in the soft-
ware release. The notifications are conveyed using
an event notification service. In order to be notified
the field docks must subscribe within this event ser-
vice.

The field dock is a server executing in each con-

sumer host. It provides information about the con-
sumer side resources and configuration. The agents
interact with the local host through the software

10

dock interface. This interface provides capabilities
to query and examine the resources and configura-
tion of the customer site in a standard way.

Both the release and the field docks have a regis-

try database. In the release dock, the registry pro-
vides a list of available software releases, while in
the field docks, the registry provides access to con-
sumer side information. The registry follows a stan-
dard structure, providing a name space of attributes
used by the software dock deployment scripts.

5.1.2 Software Deployment

Agents use information in deployable software

descriptions (DSDs) in order to perform their activi-
ties. The agents are generated in the corresponding
release dock (home site). There is one agent for each
of the deployment activities described in section
2.1.2, these agents are specially designed for each
deployment activity, performing generic procedures
based on the DSD models. The agents migrate from
the release dock server to the field dock of the host
in which the activity will be performed. Once in the
field dock, the agent performs its corresponding ac-
tivity according to his script. After deployed, the
agent can subscribe to receive events from its corre-
sponding home site (the release dock). Agents can
also communicate with each other using Internet
standard protocols. Once in the dock field, the agent
can request other agents according to the necessary
activities to be performed.

For example, once the installation agent moves to

the field dock, it performs the necessary configura-
tion in the local system and requests, according to its
script, a set of artifacts from his respective release
dock. It cans also requests for other agents, in order
to perform the other deployment activities.

5.1.3 Deployable Software Description Format

The DSD (Deployable Software Description)

format is a format used by the software dock to de-
scribe the software system to be deployed. It models
a software system based on properties and the
proper configuration of those properties. It was spe-

cially designed for software dock project and allows
the specification of:

• Configurations, allowing the description of

component revisions and variants in terms of
software system families;

• Logical assertions that have to be true in or-
der to allow the installation of the system, for
example, the presence of an specific hardware
or operating system;

• Dependencies among software components
(artifacts) and

• Activities, external applications to be exe-
cuted during the deployment process.

The applicable schema elements for a software re-

lease are computable via guard conditions that are
dispersed through the DSD specification.

5.1.4 Comments

Agents could use a generic script, and be respon-

sible for the whole deployment process. This ap-
proach could result in the economy of the customer
site resources, as less memory could be used. The
delays associated to the agent transfer could be also
avoided.

The software dock could allow the remote recon-

figuration of the agents as a way to allow the dy-
namic change of deployment polices and proce-
dures.

The DSD language does not allow the specifica-

tion of coordination and of scheduled activities de-
scribed in the section 2.1.3. On the other hand, it can
be implemented using the event structure used by
the software dock, in a way similar to the EVE
workflow. In order to do so, the DSD language
should be extended to express interdependency con-
straints among activities, as well as synchronization
activities.

6 Conclusions

This paper presented the software deployment

process, its phases, requirements and issues. In this
context, the mobile agent paradigm was introduced,
and presented as a possible approach to the software

11

deployment problem. Some examples, issues and
problems related to the use of this paradigm were
discussed, with some possible implementations sug-
gested.

The use of workflow was proposes as a possible

solution for the large-scale software deployment
coordination. Some ideas and examples of its inte-
gration with the mobile agent paradigm and the
software deployment issues were discussed.

This paper presents some general ideas, without

providing further implementation and testing. How-
ever, the ideas presented here can foster some fur-
ther research in the software deployment area.

The integration of software deployment, runtime

change and configuration management can also be
theme for further research [HHW98], specially the
use of mobile agent paradigm as a support for these
systems.

7 References

[BIJORD95] L. A. Barroso, S. Iman, J. Jeong, K.

Öner, K. Ramamurthy and M. Dubois.
RPM: A Rapid Prototyping Engine for Mul-
tiprocessor Systems. IEEE Computer, pp.
26-34, February 1995.

[CD99] J.E. Cook and J.A. Dage. Highly Reliable
Upgrading of Components. In Proceedings
of the 1999 International Conference on
Software Engineering, May 1999.

[CFHHHW98] A. Carzaniga, A. Fuggetta, R.S. Hall,
A. van der Hoek, D. Heimbigner, A.L.
Wolf. A Characterization Framework for
Software Deployment Technologies. Tech-
nical Report CU-CS-857-98, Dept. of Com-
puter Science, University of Colorado, April
1998.

[CHK94] D. Chess, C. Harrison, and A. Ker-
shenbaum. Mobile Agents: are they a good
idea?. IBM Research Report, IBM T. J.
Watson Research Center, Yourktown
Heights, N.Y. RC 19887, December 1994.

[GHNCSE97] S. Green, L. Hurst , B. Nangle, P.
Cunningham, F. Somers, and R. Evans.
Software Agents: A review. Trinity College

Dublin. May 1997.
[GT98] A. Geppert, D. Tombros. Event-based Dis-

tributed Workflow Execution with EVE,
Proceedings Middleware’98, The Lake Dis-
trict, England, September 1998, pp. 427-
442.

[HHHW97] R.S. Hall, D.M. Heimbigner, A. van der
Hoek, and A.L. Wolf. The Software Dock:
A Distributed, Agent-Based Software De-
ployment System. Technical Report CU-CS-
832-97, Department of Computer Science,
University of Colorado, Boulder, Colorado,
February 1997

[HHW98] A. van der Hoek, D. Heimbigner, and A.
L. Wolf. Investigating the Applicability of
Architecture Description in Configuration
Management and Software Deployment.
Technical Report CU-CS-862-98, Depart-
ment of Computer Science, University of
Colorado, Boulder, Colorado, September
1998.

[IBM98] RS/6000 System Management, 1998.
http://www.austin.ibm.com/resource/aix_res
ource/Pubs/redbooks/ookscl16.html

[InstallShield] http://www.installshield.com/
[JB96] S. Jablonski, C. Bussler. Workflow Man-

agement - Modeling Concepts, Architecture
and Implementation. International Thomson
Computer Press, 1996.

[KLO97] G. Karjoth, D. Lange, and M. Oshima. A
Security Model for Aglets. IEEE Internet
Computing, July-August 1997, pp. 68 - 77.

[KT98] N. M. Karnik and A. R. Tripathi. Design
Issues in Mobile-Agent Programming Sys-
tems. IEEE Concurrency, July-September
1998.

[ObjectSpace97] ObjectSpace: ObjectSpace Voy-
ager Core Package Technical Overview.
Tech. Repot. ObjectSpace Inc. Dallas, 1997.
http://www.objectspace.com.

[RGK97] D. Rus, R. Gray, and D. Kotz. Transport-
able Information Agents. Proceedings of the
first ACM international conference on
Autonomous agents, 1997, pp. 228 – 236.

[SWME00] Silva Filho R. S., Wainer J., E. R. M.
Madeira, Ellis, C. - CORBA Based Archi-
tecture for Large Scale Workflow: Special
Issue on Autonomous Decentralized Sys-
tems of the IEICE Transactions on Commu-
nications, Tokyo, Japan, Vol. E83-B, No. 5.

12

May 2000, pp.988-998.
[TGD97] D. Tombros, A. Geppert, and K. Dittrich.

The broker/service model for the design of
cooperative process-oriented environments.
Technical report. University of Zürich,
1997.
ftp://ftp.ifi.unizh.ch/pub/techreports/TR-
97/ifi-97.o6.os.gz

[WFMC96] Workflow Management Colatition.
Terminology & Glossary, Version 2.0.
WFMC-TC-1011, Jun. 1996.

