
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Semi-Autonomous Industrial Robotic Inspection:
Remote Methane Detection in Oilfield

Roberto Silva Filho, Bo Yu,

Ching-Ling Huang, Raju Venkataramana
AI and Learning Systems Group,

General Electric Global Research Center (GE-GRC)
 San Ramon, CA

{silva_filho, yu, chingling.huang, venkataramana}@ge.com

Ashraf El-Messidi, Dustin Sharber,

John Westerheide, Nasr Alkadi
Baker Hughes, a GE Company (BHGE)

Oil & Gas Technology Center
Oklahoma City, OK

{ashraf.el-messidi, dustin.sharber, john.westerheide,
nasr.alkadi}@bhge.com

Abstract— Robots have been increasingly used in industrial
applications. They usually operate along with other robots and
human supervisors in complex tasks such as industrial assets
inspection, monitoring and maintenance. Even though fully
autonomous robotics applications are still work-in-progress,
supervised semi-autonomic operation of robots in industrial
applications are going mainstream. They promote overall cost
reduction, efficiency, accuracy and safety of human workers.
These systems combine human-in-the-loop, semi-autonomous
robots, edge computing and cloud services to achieve the
automation of complex industrial tasks. This paper is a first in
series where we describe a robotic platform developed within
BHGE and GE-GRC, discussing its use in one example of
industrial inspection case study for remote methane inspection in
oilfield. We outline the requirements for the system, sharing the
experience of our design and implementation trade-offs. In
particular, the synergy among the semi-autonomous robots,
human supervisors, model-based edge controls, and the cloud
services is designed to achieve the responsive onsite monitoring
and to cope with the limited connectivity, bandwidth and
processing constraints in typical industrial setting.

Keywords—semi-autonomous robotics, remote methane leak
inspection, Unmanned Aerial Vehicle (UAV), HMI (Human
Machine Interface).

I. INTRODUCTION
Robotics have been increasingly used to automate dirty,

dull and dangerous jobs in the industrial domain. They can
withstand harsh environmental conditions, can operate over
long hours without fatigue, performing many tasks that may
seem tedious, risky or unsafe to human workers. Examples
include the inspection of turbine and pipeline interiors,
climbing and inspecting industrial asset walls, cleaning and
repairing inside parts of heavy equipment. The mobile
computational nature of robotic inspection systems, makes it a
good example of the Edge Computing [1]–[3] in the industrial
setting [2].

While high levels of robotic automation and autonomy
have been achieved in settings such as industry production lines
[4], more complex industrial tasks still require human
supervision. A typical example is the inspection of industrial
assets [5]. During these inspections, robots work with humans
in the detection of structural and functional problems involving
oil pipelines, power generation turbines, containers, reactors

and others. Robots interact with assets through nondestructive
probing, measuring, sensing and photographing, e.g., detecting
worn materials, sensing heat, gas leaks and unusual vibrations.
Every piece of equipment has its own characteristics,
parameters and configuration that make each asset installation
unique. While humans can easily cope with these variations,
robots must be pre-configured, guided through, or taught about
these differences, conditions and restrictions to perform proper
inspection.

Humans are also ultimately responsible for the quality of
the job being performed, the data being collected, and the
overall progress of the inspection work. Most importantly, the
need to detect and act upon exceptional situations is one of the
main reasons why constant human supervision is still required.
Finally, as any mechanical asset, robots still need periodic
maintenance including cleaning, battery replacement, part
exchange, and calibration. Hence, while robotic autonomy has
been increasing over the years, especially in consumer space,
industrial operators must still supervise activities of robots,
ready to assist when in-situ exceptions occur.

Another problem faced by robotic inspection in industrial
space is limited network connectivity. Industrial sites such as
oil rigs, power plants, ship engine rooms, and wind turbines are
typically located in areas of difficult access, with poor network
connectivity. The ability to cope with intermittent or poor
network connectivity is therefore essential during robotics
inspection.

However, constraints in footprint and power limit the
amount of computing robotic systems may have. For example,
UAVs (Unmanned Aerial Vehicles) must be lightweight and
small enough to fit restricted industrial areas, e.g., within
turbine casings and pipes; while the onboard battery power
must be shared between the UAV computing and propulsion
systems. As a consequence, while certain amount of autonomy
can be embedded in the robot itself, e.g. through GPS sensing,
object and movement detectors, computer vision, and other
techniques, large part of computation necessary for its
operation needs to be performed elsewhere.

For example, autonomous cars rely on high-fidelity models
of the road environment computed based on large amounts of
data in the cloud [6]; while industrial model-driven approaches,
as those described in this paper, require the development of
accurate asset models, based on extensive site survey and

operations planning, followed by the optimization step where a
3D model of the asset and site are used to plan and guide the
robots through the most efficient route.

Hence, robotics inspection requires a careful balance
between autonomy, task planning, and real-time controls
involving cloud, edge computing and proper interaction with
humans. In this paper, we present an Edge Computing
architecture [7] of a model-driven robotic UAV system used for
industrial inspections.

We first present the requirements of the system in the
context of industrial inspection scenarios; we then show how to
address these requirements by a human-in-the-loop, edge
computing system combining UAVs, base satiation, cloud
services and human operators. We describe the basic interfaces
of the system, discussing the design trade-offs and
implementation details we adopted. We then validate the
approach showing how it has been used in an industrial
application: the detection of methane leaks in industrial oil &
gas facilities.

II. REQUIREMENTS
Asset inspections are critical to the proper operation of

industrial systems. Inspections enable early detection of
operational anomalies and asset decay that may lead to future
breakdowns; they inform maintenance crews on the parts of the
system that must be serviced or replaced, thus preventing failure
of the asset; Inspections are also required after major overhauls,
before bringing the asset back into production. Robotics-assisted
inspections of industrial assets typically consist of three stages:
Planning, Execution and Reporting. In this section, the authors
specify functional requirements for these three stages and the
non-functional requirements (NFRs) of our design.

A. Inspection Planning
Many industrial assets must be shut down or overhauled

before an inspection can occur. E.g. flare stacks and power
plant turbines must be shut down, cooled then taken apart in
operations that may last from hours or days. This downtime
disturbs regular production and incurs in considerable costs. In
order to achieve maximum efficiency and mitigate asset
downtime, industrial inspections require careful preparation
and planning.

During inspection planning stage, a detailed execution plan
is produced. The plan varies, depending on the type of asset, the
data to be captured (e.g., videos, photos, ultra-sound, sensors),
the type of robots to be used in the inspection (e.g., UAVs,
crawlers, submarines), and the specific challenges of the
industrial location where the inspection will be performed (e.g.,
known obstacles, hovering area, magnetic characteristic,
predominant wind, wireless interferences). Depending on the
applications, different models are produced as part of the plan:
- Environment model: Similar to a road map in a GPS

navigation system, the environment model captures and
represents the relevant characteristics of the space where
the robots will operate and traverse. It may include data
such as weather and environmental conditions, e.g.,
predominant wind and precipitation, terrain, area of
operation, no-fly zones.

- Asset model: These are high-fidelity digital representation
of assets and reside within the overall environment model
representations. They define the exact location, within the
environment, boundaries and structure of the industrial
assets that will be inspected. This can be 2D or 3D model,
depending on the type of inspection to be performed.

- Execution plan: specifies the trajectory, tasks and
maintenance events to be followed by each robot around
the assets, within the overall environment. In particular, the
plan contains: 1) Inspection workflow model, which
describes the tasks to be performed at each step of the
inspection, identifying tools and activities required in each
step. 2) Data capturing configuration, which identifies
the sensors to be used, the type and quality attributes for
the data to be captured in each step of the workflow model.
3) as well as Robot and tools schedule, as it is usually the
case that more than one robot can be used during an
inspection. Note that multiple robots allow for divide-and-
conquer use of sensors and tools to reduce inspection time.
Once the execution plan details are identified, further

optimization is typically performed, e.g., to minimize the
overall inspection time, energy or the materials required.
Hence, computational intensive simulations based on the
environment and asset models are typically used to adjust the
execution plan to the environment, assets and the characteristics
of each robot. Typically, this plan is reviewed and approved by
the human supervisor before its execution by robots.

B. Inspection Execution
During the inspection execution, robots work along with

human supervisors and auxiliary systems in the enactment of
the inspection plan. As in any model-driven approach, any
unforeseen conditions and exceptions must be detected and
gracefully handled by the human workers. In particular the
system Human-Machine Interface (or HMI) plays a key role in
this stage to support the plan execution supervision and
exception handling.
- Supervised plan execution: During this stage, the system

HMI must keep the operator informed of the location,
progress and quality of the work of the robots. In particular,
the system operator should be constantly informed of the
following: 1) Robot’s location, with the precise location
of the robots with respect to the environment and the assets
being inspected. 2) Plan progress, which tracks the current
progress of the plan and status of the robots, including
information like finished tasks, latest checkpoint, time-to-
finish and elapsed time; and 3) Data quality, which
provides a way for the operator to assess the quality of the
data collected, e.g. by visualization of sensor data, images,
with the timestamp and location on the assets.

- Exception handling: More importantly, human workers
must be able to intervene on the operation of the robot
during its execution in order to handle exceptional
situations and perform corrective actions. The system HMI
must support: 1) Exception notification by means of
visual, audio, vibration or tactile alerts. 2) Manual
override or emergency takeover for the human

supervisor allowing full operator control of the robots; and
3) Macro functions allowing for quick execution of
common corrective tasks, e.g., autonomously navigate the
robot back home or default starting location; autonomously
keep robot’s current position; gracefully shutdown; pause,
roll-back, resume last task; among others.

C. Inspection Reporting
The inspection report summarizes the findings with

collected data during the process, and indicates potential
corrective actions to the assets. Reporting often requires further
data refinement, processing and exploration around the
findings. For example, during an inspection, defective asset
parts may be detected which may require in-depth analysis
though the capture of close-up photos, sensors and
measurements.

In our architecture, we optimize the process of reporting by
supporting different activities during inspection execution.
These activities are performed adaptively based on the current
inspection findings. In particular, the system must support:
- Incorporation of field notes: Operator-driven field notes,

during or after inspection, with the attachment of extra data
points (e.g. photos, sensor data).

- Ad-hoc data collection tasks: Optional inspection tasks
for assets (outside of original plan) as a way to collect
further data that may be crucial in determining the asset
condition.

- Interpretation of the collected data: Based on the data
collection, basic interpretation of the data and asset status
along with recommended actions / next steps. This is
typically done in the edge or, if network connectivity is
available, can also be performed in the cloud.

- On-site report generation: The faster one can generate
reports, the cheaper it is for customers and inspectors.
Whenever possible, the final report should be generated on
premisse, with minimum use to cloud services by using
cached and pre-loaded templates.

D. Non-Functional Requirements
Besides satisfying the above functional requirements, the

inspection system must support the following.
Multi-robot management: As the complexity of

inspection tasks increases, multiple robots may be used in
sequential or parallel schedules, performing similar or
complementary tasks. For example:
- Robots can be used in parallel, collaboratively inspecting

multiple and complementary parts of an asset, or
independently, working in different tasks of the plan at the
same time.

- Robots can also be used in sequence, with specialized tools
and sensors, performing multi-pass inspections. E.g. infra-
red (IR) camera scans followed by RGB scans of an asset.

- Hybrid approaches, incorporating both parallel and
sequential plan execution are also possible.

In these situations, the system HMI must support the operator
with situational awareness and exception handling involving
multiple robots. If exceptions shall occur, that require human
intervention, other robots may either continue or pause their

activities until the operator is able to resolve the exception, as a
way to prevent parallel exceptions.

Customizability: The capabilities required by inspection
applications may vary according to the mission, types of robots,
assets and different phases. The system must provide a common
platform that allows the customization and rapid prototyping
for different inspection scenarios. For example: Inspection of
flare stacks in oil refineries require the flight of UAVs over
points of interest to take IR and RGB photos, with a route in a
3D space around an asset in a restricted area [8]. UAV gas leak
inspection requires the planning and flight of semi-autonomous
airplanes over oil pad/wells and along gas pipelines, the real-
time visualization of gas leak sensor, and the ability to navigate
the plane around a long asset over a fixed altitude 2D plane [9].
Inspection of power generation turbine internals using crawler
robots requires the real-time visualization of ultrasound images,
navigation over a tridimensional asset, and inspection of videos
and images [5].

Interoperability with different robotics platforms:
Finally, the system must be able to interface with and control
robots of different vendors. For example, supervision of sensor
data and remote control must be able to operate and
communicate with robots, in similar ways over common
interfaces and protocols like ROS (Robot Operating System)
[10] and MavLink (Micro Air Vehicle Link) [11].

Mobility: The inspection of industrial assets is usually
performed at the asset site. Hence, robotic inspection systems
must be inherently mobile and portable. They must also cope
with limited network connectivity of these sites and can
perform the inspection plan offline.

III. DESIGN
In this section, we present our robotic inspection platform

architecture and HMI, showing how it supports the
aforementioned requirements. The main system components
include: a base station providing edge data storage, media
services (video, photos) and onsite plan execution; a mobile
HMI on a tablet computer, coupled with a remote controller; a
collection of robots that execute the inspection; and cloud
services providing additional processing power & capabilities.

A. Logical System Architecture
Fig. 1 presents the general architecture of the robotics

inspection system. The system is composed of several sub-
systems:
- Mobile devices (orange boxes): Apps are developed

based on cross-platform development for iOS, Android,
and web browser in environment like Apache Cordova [12]
and Ionic framework [13]. Depending on the application,
the mobile Apps use a selected set of HMI components to
support the three stages from inspection planning,
execution to reporting.

- Base Station (green boxes): Several integrational
supporting servers located on this Base Station (or
commonly called the Ground Control Station in UAV
framework). The Base Station is a common portable, onsite
computing support to work with robots from different

vendors with platform-specific adapters, e.g., ROS [10] or
MavLink [11] protocols. Additional media servers on Base
Station can support multimedia like video, audio
communications from the robots to the onsite human
worker and additional remote observers (e.g., the manager
in office). Depending on the inspection application, the
Base Station can also offer additional computing power
and the stability to support the HMI on mobile devices.
E.g., sensor data processing, aggregation, and analytics can
be done in Base Station before uploading to the Cloud.

- Cloud Services (blue box): Many cloud services are used.
They can archive uploaded data in database or file
repositories, provide image recognition, data analytics, and
other computational-intensive services. Cloud services are
used through REST APIs [14].

Fig. 1 General logical system architecture.

B. Physical System Architecture
Fig. 2 shows one realization of the system architecture,

based on a prototype robotic inspection system from [8], where
drones are used to photograph assets. In this example, the RC
controller is integrated with the mobile device. The Base
Station is a laptop or a portable PC to support more processing
power and server as the onsite communication hub.

The inspection planning is done using the Base Station
laptop, where the user can specify the flight route for robots, the
assets to cover and the inspection tasks to perform. The
execution stage is supported by the mobile device HMI
(integrated with the RC controller) where the user can use
application to monitor the inspection progress, review photos
taken along the flight route and take emergency control of the
robots. Additional image analytics is available is the cloud and
can be accessed when network connectivity is available. After
the inspection, the reporting is performed with the help of the
same Base Station laptop.

Fig. 2 One realization of the architecture and entities in Fig 1.

The mobile characteristic of the system requires onsite area
wireless networking and control among robots, Base Station and
mobile devices. Robotics protocols can run on wireless
networking layers like Wi-Fi. Meanwhile, intermittent
connectivity, via the cellular network, to the cloud is assumed.

When the sensor data or photos are collected from the asset,
the data exploration or image analytics happens along the way
from the robot’s onboard computing, mobile device, Base
Station, and then to the Cloud Services. Due to required real-
time monitoring by the human supervisor and the limited to no
connectivity, the data processing is preferred to happen
progressively on the robot, then on Base Station or mobile
device, and then on Cloud Services if possible. This approach
provides the responsiveness of onsite processing, at the edge.
However, due to the limited computing power onsite, the data is
usually processed preliminarily at edge to satisfy real-time
monitoring and then comprehensively on the cloud to achieve
the best results. As a balance of cloud vs. edge computing, the
overall architecture and functionality of each components and
HMI must be designed with flexibility for the inspection
application to work smoothly in the field.

C. Human-Machine Interface Components
Our human-in-the-loop robotic inspection platform

assumes constant operator supervision. As such, it must provide
adequate situational awareness through a set of user interfaces,
used during inspection, planning and reporting. In particular, we
classify the HMI components as the follow five types, as
depicted at the top in Fig. 1.

Situation Awareness Components provide human
supervisor with the awareness of the inspection. For example, 1)
Status bar for showing the status of robots, flight metrics,
battery levels, etc. 2) Map view to show the real-time positions
of the robot with respect to the assets and overall environment,
usually rendered in 2D or 3D view. 3) Live video to provide the
real-time video feed from the robot’s point of view (POV). The
user can maneuver the robot and switch between video feeds
when multiple cameras are mounted on the robot.

Task / Asset Analytics Components are those that
provide information related to the inspection tasks or the work
flow for the robot to perform. The human worker utilizes these
components to make sure that the robot performs according to
the plan. For example, 1) Inspection progress bar with main
inspection checkpoints, or as a route around the asset, where
different colors indicate completed tasks, remaining tasks,
missed spots, etc. 2) Heatmap showing real-time visualization

of collected sensor data, quality, warnings, etc. This heatmap
can be overlaid on top of the map view or rendered in a separate
view. 3) Analytics model visualization showing the statistics
and parameters behind analytics models and data visualization.

History components are those provide the history data
overview during the inspection. For example, Timeline bar
shows the recently captured sensor data, photos or video, so the
user can nevigate along the timeline, browse the data, and keep
track of key inspection events. These data points may be
organized as a sequential timeline view and tagged with the
tasks performed. If network connectivity is available to access
Cloud Services, additional asset records from historian or
database can be shown, e.g., past maintenance records, previous
repairing, replaced components.

Notification components are multiple-modal alarms and
notifications to the human supervisor. For example, 1) Color-
coded notification panel to visually indicate important events
with different levels of severity and health warning of the robots
and assets. 2) Audible alerts or text-to-speech notifications
to deliver the notification via audio in the case when the user
cannot look at mobile device and has to work on the job with
both hands. 3) Vibrations as a subtle way to communicate with
the human worker. A combination of above method can be
used, depending on the type of inspections.

Interaction components support additional functions for
user to quickly re-configure the robot, handle exceptions, add
to the inspection plan to collect more data points, etc. For
example, 1) Quick action bars to support the App setting and
implementation of major configurations. Additional macro
functions to control the robots can be used throughout various
scenarios to allow the fast response to emergent conditions like
“interrupt and resume” of current task and “go back to home”
to return home location for battery change. 2) Robot path
editor to support onsite ad-hoc movement planning for robots
like UAV flight route update.

D. Base station components
The base station sitting on the edge plays the central role

within our robotic inspection platform. It consists of a variety of
components to coordinate interactions and communications
among UAVs, user interfaces, and the cloud services.

Ground Control Station (GCS) handles the two-way
communication with UAVs via standard robotics protocols,
such as ROS [10] or MavLink [11]. On one hand, user requests
from mobile apps or results from the Analytics Module are
translated into standard robotics messages and sent to UAVs via
radio link. On the other hand, parameters and sensor data are
received from UAVs and pushed to Messaging Bus for further
consumption.

Messaging Bus provides the real-time communication
channel that can be subscribed/published from mobile apps or
other components in the base station. The different interface
components, as we described earlier, may subscribe to different
types of events to support situation awareness in real-time
monitoring. They may send control commands to the UAVs via
the messaging bus as well. The messaging service is also
consumed by other components inside the base station to

coordinate behaviors. For instance, the Analytics Module
listens to the sensor data collected from the UAVs, builds the
online analytics model, then publishes the model parameters
back to the messaging bus, which is further received by the
Reporting Module to generate reports and save to the cloud.

Analytic Module offloads the computing overhead from
the UAVs to the edge box. It ingests and integrates raw sensor
data from multiple UAVs and builds the online analytics model
that is used to dynamically optimize UAV flight path, update
sampling rate, and coordinate the UAV swarm.

Cloud Data Broker serves as the broker between the base
station and the cloud services. It subscribes to the real-time data
stream from the messaging bus, synthesize it, and periodically
saves the data to the cloud at the background. In addition, it
provides the local data persistence layer to provide fault
tolerance due to unstable Internet connections.

Context Module provides the context model to capture the
relevant information for user interaction, and the inference
engine to reason about the user’s current activity and situation,
which is consumed by the UI manager to provide UI adaption
and customization. In the current implementation, the Context
Module is driven by a Finite State Machine to infer the current
phase in the inspection process based on a set of UAV and
environmental variables. In the future work, we plan to
experiment with more complex context awareness models [15]
to provide more fine-grained customization capabilities.

E. Cloud services
As discussed earlier, assets inspection utilizes a set of cloud

services to provide information that can be consumed by the user
interfaces as well as the base station components. In general, we
summarize them into three categories: 1) Asset Data Services
are the gateway to existing data repositories of the inspected
assets themselves. This usually includes the basic asset
information, historical data regarding its operation and
inspection schedules. 2) Environment Data Services are
external services to fetch environmental data, such as weather
condition, wind direction and speed. This data is critical in UAV
inspection to optimize the parameters and flight path, as well as
to adjust the parameters in the analytics model. 3) Reporting
Data Service is used to store the inspection results to the cloud
and also allows the mobile apps to retrieve historical reports.

IV. CASE STUDY: METHANE DETECTION IN OIL FIELD
In this section, we show how our robotic architecture has

been used in support of methane leak inspection. Raven [9] is a
UAV inspection platform developed and funded by Baker
Hughes, a GE Company (BHGE), with the help of GE Digital
Research team in San Ramon focusing on UI/UX and system
architecture.

Raven uses UAVs to automate the field data collection /
detection of methane leaks in oil & gas facilities. The use of
UAVs automates the otherwise labor-intensive task currently
performed by human inspectors that need to manually inspect
facilities and pipelines with using optical gas imaging (OGI)
devices. This method is time-intensive and the data provided by
the measurement device is qualitative in nature. i.e. it only
provides a binary (yes/no) indication of leakage with no
measurement of its intensity. Additionally, the OGI devices are

expensive and difficult for operators to deploy at-scale. Raven
replaces this procedure with the process depicted in in Fig. 3.

Fig. 3 Workflow for Raven remote methane inspection in oilfield.

In Step 1 of Fig. 3, the field engineer browses existing oil
facilities, reviewing past inspection reports and decide which
one to inspect. Based on the site map and layout, the engineer
plans the flight route for the UAV to collect methane data and
detect leaks. Upon arriving at the site in Step 2, the engineer
reviews the inspection plan and connects the mobile device
with the UAV via the GCS. Typically, supporting servers and
GCS are located in the engineer’s truck. Once the mobile device
connects with the UAV, the inspection plan will be uploaded to
UAV’s navigation controller. In Step 3, the engineer checks the
status of UAV before launching it.

In Step 4, the engineer uses the mobile device to monitor
the inspection progress, the current methane readings, and the
status of the UAV. In Step 5, the field engineer can review the
summary of collected data in statistics and visualization, and
put in additional remarks about this inspection. Finally, in Step
6, a report will be auto-generated and all the data will be
uploaded to the Cloud Services for further processing and
archiving. These 6 steps complete a typical methane inspection
cycle for Raven.

A. Methane inspection scenario
This section shows in detail, the use of Raven methane

inspection app, hightlighting the main features of the system
during planning, execution and reporting stages.

Planning: During inspection planning, the engineer
browses all the oil facilities registered in the system cloud
database. Once the site is selected, the user is provided with a
site map on top of which the plan is constructed. As shown in
Fig. 4, the inspection plan consists of sequence of geo-located
way-points. The user adds one way-point at a time by clicking
on the map and specifying the way-point’s altitude (height), and
the hoving delay before moving to next way-point. This delay
translates into the number of sensor data points collected at this
way-point. The engineer can use finger gestures to move and
adjust the way-points on the map, which later will be converted
into GPS coordinates. The way-points can also be generated
automatically by specifying the area to cover.

The flight plan is designed in such a way that allows for
sufficient coverage over the entire facility infrastructure.
Although there are known higher risk pieces of equipment

where leaks generally occur, they can be found at any point of
the system where gas travels. As such, the flight path planning
is a critical step in the overall process in ensuring that a
thorough survey is conducted. Another component in creating
the flight plan is assessing the appropriate speed of the UAV
during the survey.

Fig. 4 Plan the UAV’s flight route as a sequence of way-points.

The appropriate speed is dictated by the measurement
frequency of the sensor. Flying too slow may significantly
increase survey flight time, resulting in a lower time and cost-
savings to the operator, while flying too fast would result in
sparse measurement points/data points across the flight path,
ultimately leading to an inaccurate final output. Because the
system features a laser-based sensor, it operates by taking an
average concentration measurement across the length of the
laser beam. Therefore, flying as low as safely possible is key in
increasing the overall measurement accuracy. The flight
altitude is typically governed by the tallest structure on-site, as
operators generally require that the UAV flies at least 20 feet
higher than the tallest structure.

Fig. 5 Monitor the inspection and review captured data in real time.

Execution: During inspection execution, as seen in Fig. 5,
in the same HMI allows the field engineer to monitor the
inspection process. The top of the screen shows the situation
awareness components and the status bar. The status bar
indicates UAV’s state in the middle banner, along with satellite
signal, communication signal and battery level. On the top left,
there are a few buttons for App setting, connecting to the UAV,
and video streaming from UAV. The heatmap and flight route
are overlaid on top of the satellite map. The heatmap shows
color-coded methane concentration based on sensor data. The
left side of the screen shows some Macro buttons for emergency
UAV takeover functions.

The left bottom portion shows more details of the UAV’s
current status, including coordinates, flight heading, speed and
climb rate. The right bottom portion shows the environment
condition like site wind speed and direction. The center bottom
portion shows status of the methane analytics model. Latest
methane sensor value is displayed here with colors matched
with those on the heatmap. The outputs of the analytics model,
as the parameterization of the probability distribution, are also
recorded and then uploaded to Cloud Services for archiving.
The field engineer can also view and archive the live video
streamed from UAV’s onboard camera. An infrared camera can
also be utilized to allow the ground user to look at equipment
thermal signatures, understand its health, and potentially
identify any malfunctions.

Fig. 6 Review report before submitting to Cloud Services.

Reporting: Fig. 6 shows one example of Raven reporting
view on the HMI. At this stage, the UAV has completed the
inspection plan, with all data collected and analytics model
parameters ready to be uploaded to Cloud Services. This
reporting view also includes the summary and extra information
about the oil facility, UAV’s flight status and weather condition
during the performed inspection. The engineer can choose to
add remarks and review the methane data points rendered on
the map. The engineer can also view the PDF version of the
same report and, if network connectivity is available, send the
report to the manager, site maintenance or other interested

parties. This final reporting view completes one inspection plan
and the engineer can execute another inspection plan to collect
further data points or move on to the next site.

B. Methane sensing and modeling
An important outcome of the inspection process is a geo-

located heatmap produced by the app. As the UAV is inflight,
the methane concentration values from the laser-based methane
sensor are paired with the GPS coordinates. In the HMI, the
inspector/operator at the ground-level is able to quickly identify
where potential leaks may be. While the HMI relies on Google
Earth imagery as the base layer for planning the initial route,
the live video feed will point the inspector to the exact location
of the UAV, so the concentration hotspots are easily
identifiable. After the flight, all of the collected data are
processed into a high-resolution heatmap, e.g., see Fig. 7.

Additionally, during post-flight processing, the collected
imagery is converted into a new/updated 2D image of the
facility. This allows for more accurate leak localization to be
conducted. Because of the standardized approach put in-place
by regulatory agencies (EPA and others), it is critical for newly
developed leak detection technologies to accurately determine
both leak location and leak rate.

Fig. 7 Post-flight high-resolution methane concentration heat map.

Because the atmospheric methane plumes are significantly
altered by wind dynamics, dispersion modeling is necessary in
order to trace the detected plumes back to their sources on the
ground. For this analysis, weather condition data is necessary.
To capture higher granularity of weather conditions during the
inspection, an external weather station is placed on-site and
captures wind speed, wind direction, and temperature
measurements at 4Hz. The geotagged methane data is fused
with the weather station data to perform inverse dispersion
modeling. Additionally, within a CFD simulation environment,
individual leak rates may be estimated.

At the conclusion of the inverse dispersion modeling
analysis, a high-resolution concentration heatmap is generated
and overlaid onto the facility image. This heatmap indicates the

origin of the detected leaks with a higher degree of confidence.
While a 2D heatmap is provided in HMI immediately after the
flight, it typically takes hours to run the dispersion analytics and
output the high precision heatmap due to the intensive
computing involved.

C. Design trade-offs and implementation details
The lack of network connectivity, and limitations in

processing power lead us to adopt different design decisions in
the implementation of Raven system. The lack of connectivity
made us move processing to the drone and to the base station.
Connectivity with the cloud, however, is still required for
sharing report results, for accessing historical data, and for
obtaining information such as weather, and the map itself.

Real-time video was particularly challenging as it requires
high bandwidth, which can interfere with drone controls
responsiveness. The solution to the problem was to separate
video from controls, using independent communication
channels. The base station is important as a central point for
data gathering and for controlling and coordinating the activity
of multiple UAVs. As much as possible, sensor summarization
is done in the UAV, having only small data transmitted between
UAV and base station during inspection. This optimization is
supported by a dedicated UAV on-board computer.

The HMI components and mobile apps are implemented in
using Cordova/Ionic framework [13] based on JavaScript,
which allows the porting the application to different mobile
platforms including: iOS, Android and Web browser. The base
station services are implemented as Docker [16] containers. In
particular, Redis [17] Pub/Sub messaging bus is used to handle
the communication between components and UAV. The
messaging bus exposes WebSockets and REST API interfaces
for client-side communication. The Ground Control Station
communicate with the UAV using an open source MavLink
implementation called MavProxy [18].

The Analytics module uses the 2D Gaussian Process [19]
to model the methane distribution. The context module and
reporting module are written in Node.js [20], due to the need
for efficient non-blocking I/O model. The container-based
architecture allows for easy scaling of the base station from a
micro-controller in prototyping to a more powerful PC when
analytics module was introduced, and eventually to a cluster
when UAV swarm is supported.

V. CONCLUSIONS
Semi-autonomous robotic inspection system is a special

case of Edge Computing that requires an orchestration of the
robotic autonomy, task planning, and real-time controls
involving cloud, edge services and proper HMI for human
supervision and emergency takeover. In this paper, we outline
the functional requirements for the planning, execution, and
reporting stages, as well as non-functional requirements for
human-in-the-loop industrial robotic inspection systems. We
present our design and current implementation, showing how it
has been used in the inspection and detection of methane leaks
in industrial oilfield facilities. This UAV inspection system
provides higher resolution and accuracy if compared to the

existing manual inspection process based on hand-held optical
gas imaging devices. It produces more precise heatmaps and
automates the reporting and data sharing processes. We
envision this specific kind of Edge Computing in industrial
applications to gain popularity in coming years.

ACKNOWLEDGEMENTS
We would like to acknowledge the research collaboration and contribution by
Oklahoma State University (OSU) team: Dr. Jamey Jacob, Dane Johnson, Nate
Lannan, Taylor Mitchell, and Rakshit Allamraju.

REFERENCES
[1] P. Corcoran and S. K. Datta, “Mobile-Edge Computing and the Internet

of Things for Consumers: Extending cloud computing and services to
the edge of the network,” IEEE Consumer Electronics Magazine, vol.
5, no. 4, pp. 73–74, Oct. 2016.

[2] “What is Edge Computing?,” GE Digital, 09-Jun-2017. [Online].
Available: https://www.ge.com/digital/blog/what-edge-computing.
[Accessed: 04-Jan-2018].

[3] ETSI, “Mobile-Edge Computing – Introductory Technical White
Paper,” Sep. 2014.

[4] “Brilliant Manufacturing,” GE Digital, 23-May-2016. [Online].
Available: https://www.ge.com/digital/brilliant-manufacturing.
[Accessed: 04-Jan-2018].

[5] “Mobile Robotics for Inspection.” [Online]. Available:
http://inspection-robotics.com/category/products/mobile-robotics/.
[Accessed: 04-Jan-2018].

[6] E. Guizzo, “How Google’s Self-Driving Car Works,” IEEE Spectrum:
Technology, Engineering, and Science News, 18-Oct-2011. [Online].
Available: https://spectrum.ieee.org/automaton/robotics/artificial-
intelligence/how-google-self-driving-car-works. [Accessed: 04-Jan-
2018].

[7] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing: Vision
and Challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, Oct. 2016.

[8] “Avitas Systems, a GE Venture.” [Online]. Available:
http://www.avitas-systems.com/. [Accessed: 04-Jan-2018].

[9] “Meet Raven - YouTube.” [Online]. Available:
https://www.youtube.com/watch?v=GHDyHALZ3EQ. [Accessed: 04-
Jan-2018].

[10] M. Quigley et al., “ROS: an open-source Robot Operating System,” in
ICRA workshop on open source software, 2009, vol. 3, p. 5.

[11] “MAVLink Micro Air Vehicle Communication Protocol -
QGroundControl GCS.” [Online]. Available:
http://qgroundcontrol.org/mavlink/start. [Accessed: 04-Jan-2018].

[12] “Apache Cordova.” [Online]. Available: https://cordova.apache.org/.
[Accessed: 04-Jan-2018].

[13] Ionic, “Ionic Framework,” Ionic Framework. [Online]. Available:
https://ionicframework.com/. [Accessed: 04-Jan-2018].

[14] R. T. Fielding and R. N. Taylor, “Principled Design of the Modern Web
Architecture,” in Proceedings of the 22Nd International Conference on
Software Engineering, New York, NY, USA, 2000, pp. 407–416.

[15] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context
Aware Computing for The Internet of Things: A Survey,” IEEE
Communications Surveys Tutorials, vol. 16, no. 1, pp. 414–454, First
2014.

[16] “Docker,” Docker. [Online]. Available: https://www.docker.com/.
[Accessed: 11-Jan-2018].

[17] “Redis.” [Online]. Available: https://redis.io/. [Accessed: 11-Jan-
2018].

[18] “MAVProxy — MAVProxy 1.6.2 documentation.” [Online].
Available: http://ardupilot.github.io/MAVProxy/html/index.html.
[Accessed: 11-Jan-2018].

[19] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for
Machine Learning. Cambridge, Mass: The MIT Press, 2005.

[20] Node.js Foundation, “Node.js,” Node.js. [Online]. Available:
https://nodejs.org/en/. [Accessed: 04-Jan-2018].

