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Abstract— Robots have been increasingly used in industrial 
applications. They usually operate along with other robots and 
human supervisors in complex tasks such as industrial assets 
inspection, monitoring and maintenance. Even though fully 
autonomous robotics applications are still work-in-progress, 
supervised semi-autonomic operation of robots in industrial 
applications are going mainstream. They promote overall cost 
reduction, efficiency, accuracy and safety of human workers. 
These systems combine human-in-the-loop, semi-autonomous 
robots, edge computing and cloud services to achieve the 
automation of complex industrial tasks. This paper is a first in 
series where we describe a robotic platform developed within 
BHGE and GE-GRC, discussing its use in one example of 
industrial inspection case study for remote methane inspection in 
oilfield. We outline the requirements for the system, sharing the 
experience of our design and implementation trade-offs. In 
particular, the synergy among the semi-autonomous robots, 
human supervisors, model-based edge controls, and the cloud 
services is designed to achieve the responsive onsite monitoring 
and to cope with the limited connectivity, bandwidth and 
processing constraints in typical industrial setting.   

Keywords—semi-autonomous robotics, remote methane leak 
inspection, Unmanned Aerial Vehicle (UAV), HMI (Human 
Machine Interface). 

I. INTRODUCTION 
Robotics have been increasingly used to automate dirty, 

dull and dangerous jobs in the industrial domain. They can 
withstand harsh environmental conditions, can operate over 
long hours without fatigue, performing many tasks that may 
seem tedious, risky or unsafe to human workers. Examples 
include the inspection of turbine and pipeline interiors, 
climbing and inspecting industrial asset walls, cleaning and 
repairing inside parts of heavy equipment. The mobile 
computational nature of robotic inspection systems, makes it a 
good example of the Edge Computing [1]–[3] in the industrial 
setting [2]. 

While high levels of robotic automation and autonomy 
have been achieved in settings such as industry production lines 
[4], more complex industrial tasks still require human 
supervision. A typical example is the inspection of industrial 
assets [5]. During these inspections, robots work with humans 
in the detection of structural and functional problems involving 
oil pipelines, power generation turbines, containers, reactors 

and others. Robots interact with assets through nondestructive 
probing, measuring, sensing and photographing, e.g., detecting 
worn materials, sensing heat, gas leaks and unusual vibrations. 
Every piece of equipment has its own characteristics, 
parameters and configuration that make each asset installation 
unique. While humans can easily cope with these variations, 
robots must be pre-configured, guided through, or taught about 
these differences, conditions and restrictions to perform proper 
inspection.  

Humans are also ultimately responsible for the quality of 
the job being performed, the data being collected, and the 
overall progress of the inspection work. Most importantly, the 
need to detect and act upon exceptional situations is one of the 
main reasons why constant human supervision is still required. 
Finally, as any mechanical asset, robots still need periodic 
maintenance including cleaning, battery replacement, part 
exchange, and calibration. Hence, while robotic autonomy has 
been increasing over the years, especially in consumer space, 
industrial operators must still supervise activities of robots, 
ready to assist when in-situ exceptions occur.  

Another problem faced by robotic inspection in industrial 
space is limited network connectivity. Industrial sites such as 
oil rigs, power plants, ship engine rooms, and wind turbines are 
typically located in areas of difficult access, with poor network 
connectivity. The ability to cope with intermittent or poor 
network connectivity is therefore essential during robotics 
inspection.  

However, constraints in footprint and power limit the 
amount of computing robotic systems may have. For example, 
UAVs (Unmanned Aerial Vehicles) must be lightweight and 
small enough to fit restricted industrial areas, e.g., within 
turbine casings and pipes; while the onboard battery power 
must be shared between the UAV computing and propulsion 
systems. As a consequence, while certain amount of autonomy 
can be embedded in the robot itself, e.g. through GPS sensing, 
object and movement detectors, computer vision, and other 
techniques, large part of computation necessary for its 
operation needs to be performed elsewhere.  

For example, autonomous cars rely on high-fidelity models 
of the road environment computed based on large amounts of 
data in the cloud [6]; while industrial model-driven approaches, 
as those described in this paper, require the development of 
accurate asset models, based on extensive site survey and 



operations planning, followed by the optimization step where a 
3D model of the asset and site are used to plan and guide the 
robots through the most efficient route.  

Hence, robotics inspection requires a careful balance 
between autonomy, task planning, and real-time controls 
involving cloud, edge computing and proper interaction with 
humans. In this paper, we present an Edge Computing 
architecture [7] of a model-driven robotic UAV system used for 
industrial inspections.   

We first present the requirements of the system in the 
context of industrial inspection scenarios; we then show how to 
address these requirements by a human-in-the-loop, edge 
computing system combining UAVs, base satiation, cloud 
services and human operators. We describe the basic interfaces 
of the system, discussing the design trade-offs and 
implementation details we adopted. We then validate the 
approach showing how it has been used in an industrial 
application: the detection of methane leaks in industrial oil & 
gas facilities. 

II. REQUIREMENTS 
Asset inspections are critical to the proper operation of 

industrial systems. Inspections enable early detection of 
operational anomalies and asset decay that may lead to future 
breakdowns; they inform maintenance crews on the parts of the 
system that must be serviced or replaced, thus preventing failure 
of the asset; Inspections are also required after major overhauls, 
before bringing the asset back into production. Robotics-assisted 
inspections of industrial assets typically consist of three stages: 
Planning, Execution and Reporting. In this section, the authors 
specify functional requirements for these three stages and the 
non-functional requirements (NFRs) of our design. 

A. Inspection Planning 
Many industrial assets must be shut down or overhauled 

before an inspection can occur. E.g. flare stacks and power 
plant turbines must be shut down, cooled then taken apart in 
operations that may last from hours or days. This downtime 
disturbs regular production and incurs in considerable costs. In 
order to achieve maximum efficiency and mitigate asset 
downtime, industrial inspections require careful preparation 
and planning.  

During inspection planning stage, a detailed execution plan 
is produced. The plan varies, depending on the type of asset, the 
data to be captured (e.g., videos, photos, ultra-sound, sensors), 
the type of robots to be used in the inspection (e.g., UAVs, 
crawlers, submarines), and the specific challenges of the 
industrial location where the inspection will be performed (e.g., 
known obstacles, hovering area, magnetic characteristic, 
predominant wind, wireless interferences). Depending on the 
applications, different models are produced as part of the plan: 
- Environment model:  Similar to a road map in a GPS 

navigation system, the environment model captures and 
represents the relevant characteristics of the space where 
the robots will operate and traverse.  It may include data 
such as weather and environmental conditions, e.g., 
predominant wind and precipitation, terrain, area of 
operation, no-fly zones. 

- Asset model: These are high-fidelity digital representation 
of assets and reside within the overall environment model 
representations. They define the exact location, within the 
environment, boundaries and structure of the industrial 
assets that will be inspected. This can be 2D or 3D model, 
depending on the type of inspection to be performed.  

- Execution plan: specifies the trajectory, tasks and 
maintenance events to be followed by each robot around 
the assets, within the overall environment. In particular, the 
plan contains: 1) Inspection workflow model, which 
describes the tasks to be performed at each step of the 
inspection, identifying tools and activities required in each 
step. 2) Data capturing configuration, which identifies 
the sensors to be used, the type and quality attributes for 
the data to be captured in each step of the workflow model. 
3) as well as Robot and tools schedule, as it is usually the 
case that more than one robot can be used during an 
inspection. Note that multiple robots allow for divide-and-
conquer use of sensors and tools to reduce inspection time.  
Once the execution plan details are identified, further 

optimization is typically performed, e.g., to minimize the 
overall inspection time, energy or the materials required. 
Hence, computational intensive simulations based on the 
environment and asset models are typically used to adjust the 
execution plan to the environment, assets and the characteristics 
of each robot. Typically, this plan is reviewed and approved by 
the human supervisor before its execution by robots.  

B. Inspection Execution 
During the inspection execution, robots work along with 

human supervisors and auxiliary systems in the enactment of 
the inspection plan. As in any model-driven approach, any 
unforeseen conditions and exceptions must be detected and 
gracefully handled by the human workers. In particular the 
system Human-Machine Interface (or HMI) plays a key role in 
this stage to support the plan execution supervision and 
exception handling. 
- Supervised plan execution: During this stage, the system 

HMI must keep the operator informed of the location, 
progress and quality of the work of the robots. In particular, 
the system operator should be constantly informed of the 
following: 1) Robot’s location, with the precise location 
of the robots with respect to the environment and the assets 
being inspected. 2) Plan progress, which tracks the current 
progress of the plan and status of the robots, including 
information like finished tasks, latest checkpoint, time-to-
finish and elapsed time; and 3) Data quality, which 
provides a way for the operator to assess the quality of the 
data collected, e.g. by visualization of sensor data, images, 
with the timestamp and location on the assets.  

- Exception handling: More importantly, human workers 
must be able to intervene on the operation of the robot 
during its execution in order to handle exceptional 
situations and perform corrective actions.  The system HMI 
must support: 1) Exception notification by means of 
visual, audio, vibration or tactile alerts. 2) Manual 
override or emergency takeover for the human 



supervisor allowing full operator control of the robots; and 
3) Macro functions allowing for quick execution of 
common corrective tasks, e.g., autonomously navigate the 
robot back home or default starting location; autonomously 
keep robot’s current position; gracefully shutdown; pause, 
roll-back, resume last task; among others. 

C. Inspection Reporting 
The inspection report summarizes the findings with 

collected data during the process, and indicates potential 
corrective actions to the assets. Reporting often requires further 
data refinement, processing and exploration around the 
findings. For example, during an inspection, defective asset 
parts may be detected which may require in-depth analysis 
though the capture of close-up photos, sensors and 
measurements.  

In our architecture, we optimize the process of reporting by 
supporting different activities during inspection execution. 
These activities are performed adaptively based on the current 
inspection findings. In particular, the system must support: 
- Incorporation of field notes: Operator-driven field notes, 

during or after inspection, with the attachment of extra data 
points (e.g. photos, sensor data). 

- Ad-hoc data collection tasks: Optional inspection tasks 
for assets (outside of original plan) as a way to collect 
further data that may be crucial in determining the asset 
condition. 

- Interpretation of the collected data: Based on the data 
collection, basic interpretation of the data and asset status 
along with recommended actions / next steps. This is 
typically done in the edge or, if network connectivity is 
available, can also be performed in the cloud.  

- On-site report generation: The faster one can generate 
reports, the cheaper it is for customers and inspectors. 
Whenever possible, the final report should be generated on 
premisse, with minimum use to cloud services by using 
cached and pre-loaded templates. 

D. Non-Functional Requirements 
Besides satisfying the above functional requirements, the 

inspection system must support the following.  
Multi-robot management: As the complexity of 

inspection tasks increases, multiple robots may be used in 
sequential or parallel schedules, performing similar or 
complementary tasks. For example:  
- Robots can be used in parallel, collaboratively inspecting 

multiple and complementary parts of an asset, or 
independently, working in different tasks of the plan at the 
same time. 

- Robots can also be used in sequence, with specialized tools 
and sensors, performing multi-pass inspections. E.g. infra-
red (IR) camera scans followed by RGB scans of an asset. 

- Hybrid approaches, incorporating both parallel and 
sequential plan execution are also possible.  

In these situations, the system HMI must support the operator 
with situational awareness and exception handling involving 
multiple robots. If exceptions shall occur, that require human 
intervention, other robots may either continue or pause their 

activities until the operator is able to resolve the exception, as a 
way to prevent parallel exceptions.  

Customizability: The capabilities required by inspection 
applications may vary according to the mission, types of robots, 
assets and different phases. The system must provide a common 
platform that allows the customization and rapid prototyping 
for different inspection scenarios.  For example: Inspection of 
flare stacks in oil refineries require the flight of UAVs over 
points of interest to take IR and RGB photos, with a route in a 
3D space around an asset in a restricted area [8]. UAV gas leak 
inspection requires the planning and flight of semi-autonomous 
airplanes over oil pad/wells and along gas pipelines, the real-
time visualization of gas leak sensor, and the ability to navigate 
the plane around a long asset over a fixed altitude 2D plane [9]. 
Inspection of power generation turbine internals using crawler 
robots requires the real-time visualization of ultrasound images, 
navigation over a tridimensional asset, and inspection of videos 
and images [5]. 

Interoperability with different robotics platforms:  
Finally, the system must be able to interface with and control 
robots of different vendors. For example, supervision of sensor 
data and remote control must be able to operate and 
communicate with robots, in similar ways over common 
interfaces and protocols like ROS (Robot Operating System) 
[10] and MavLink (Micro Air Vehicle Link) [11].  

Mobility: The inspection of industrial assets is usually 
performed at the asset site. Hence, robotic inspection systems 
must be inherently mobile and portable. They must also cope 
with limited network connectivity of these sites and can 
perform the inspection plan offline. 

III. DESIGN 
In this section, we present our robotic inspection platform 

architecture and HMI, showing how it supports the 
aforementioned requirements. The main system components 
include: a base station providing edge data storage, media 
services (video, photos) and onsite plan execution; a mobile 
HMI on a tablet computer, coupled with a remote controller; a 
collection of robots that execute the inspection; and cloud 
services providing additional processing power & capabilities.  

A. Logical System Architecture 
Fig. 1 presents the general architecture of the robotics 

inspection system. The system is composed of several sub-
systems: 
- Mobile devices (orange boxes): Apps are developed 

based on cross-platform development for iOS, Android, 
and web browser in environment like Apache Cordova [12] 
and Ionic framework [13]. Depending on the application, 
the mobile Apps use a selected set of HMI components to 
support the three stages from inspection planning, 
execution to reporting. 

- Base Station (green boxes): Several integrational 
supporting servers located on this Base Station (or 
commonly called the Ground Control Station in UAV 
framework). The Base Station is a common portable, onsite 
computing support to work with robots from different 



vendors with platform-specific adapters, e.g., ROS [10] or 
MavLink [11] protocols.  Additional media servers on Base 
Station can support multimedia like video, audio 
communications from the robots to the onsite human 
worker and additional remote observers (e.g., the manager 
in office). Depending on the inspection application, the 
Base Station can also offer additional computing power 
and the stability to support the HMI on mobile devices. 
E.g., sensor data processing, aggregation, and analytics can 
be done in Base Station before uploading to the Cloud.   

- Cloud Services (blue box):  Many cloud services are used. 
They can archive uploaded data in database or file 
repositories, provide image recognition, data analytics, and 
other computational-intensive services. Cloud services are 
used through REST APIs [14].  
 

 
Fig. 1 General logical system architecture. 

B. Physical System Architecture 
Fig. 2 shows one realization of the system architecture, 

based on a prototype robotic inspection system from [8], where 
drones are used to photograph assets. In this example, the RC 
controller is integrated with the mobile device. The Base 
Station is a laptop or a portable PC to support more processing 
power and server as the onsite communication hub.  

The inspection planning is done using the Base Station 
laptop, where the user can specify the flight route for robots, the 
assets to cover and the inspection tasks to perform. The 
execution stage is supported by the mobile device HMI 
(integrated with the RC controller) where the user can use 
application to monitor the inspection progress, review photos 
taken along the flight route and take emergency control of the 
robots. Additional image analytics is available is the cloud and 
can be accessed when network connectivity is available. After 
the inspection, the reporting is performed with the help of the 
same Base Station laptop. 

 
Fig. 2  One realization of the architecture and entities in Fig 1. 

The mobile characteristic of the system requires onsite area 
wireless networking and control among robots, Base Station and 
mobile devices. Robotics protocols can run on wireless 
networking layers like Wi-Fi. Meanwhile, intermittent 
connectivity, via the cellular network, to the cloud is assumed. 

When the sensor data or photos are collected from the asset, 
the data exploration or image analytics happens along the way 
from the robot’s onboard computing, mobile device, Base 
Station, and then to the Cloud Services. Due to required real-
time monitoring by the human supervisor and the limited to no 
connectivity, the data processing is preferred to happen 
progressively on the robot, then on Base Station or mobile 
device, and then on Cloud Services if possible. This approach 
provides the responsiveness of onsite processing, at the edge. 
However, due to the limited computing power onsite, the data is 
usually processed preliminarily at edge to satisfy real-time 
monitoring and then comprehensively on the cloud to achieve 
the best results. As a balance of cloud vs. edge computing, the 
overall architecture and functionality of each components and 
HMI must be designed with flexibility for the inspection 
application to work smoothly in the field.   

C. Human-Machine Interface Components 
Our human-in-the-loop robotic inspection platform 

assumes constant operator supervision. As such, it must provide 
adequate situational awareness through a set of user interfaces, 
used during inspection, planning and reporting.  In particular, we 
classify the HMI components as the follow five types, as 
depicted at the top in Fig. 1.  

Situation Awareness Components provide human 
supervisor with the awareness of the inspection. For example, 1) 
Status bar for showing the status of robots, flight metrics, 
battery levels, etc. 2) Map view to show the real-time positions 
of the robot with respect to the assets and overall environment, 
usually rendered in 2D or 3D view. 3) Live video to provide the 
real-time video feed from the robot’s point of view (POV). The 
user can maneuver the robot and switch between video feeds 
when multiple cameras are mounted on the robot.  

Task / Asset Analytics Components are those that 
provide information related to the inspection tasks or the work 
flow for the robot to perform. The human worker utilizes these 
components to make sure that the robot performs according to 
the plan. For example, 1) Inspection progress bar with main 
inspection checkpoints, or as a route around the asset, where 
different colors indicate completed tasks, remaining tasks, 
missed spots, etc. 2) Heatmap showing real-time visualization 



of collected sensor data, quality, warnings, etc. This heatmap 
can be overlaid on top of the map view or rendered in a separate 
view. 3) Analytics model visualization showing the statistics 
and parameters behind analytics models and data visualization. 

History components are those provide the history data 
overview during the inspection. For example, Timeline bar 
shows the recently captured sensor data, photos or video, so the 
user can nevigate along the timeline, browse the data, and keep 
track of key inspection events. These data points may be 
organized as a sequential timeline view and tagged with the 
tasks performed.  If network connectivity is available to access 
Cloud Services, additional asset records from historian or 
database can be shown, e.g., past maintenance records, previous 
repairing, replaced components. 

Notification components are multiple-modal alarms and 
notifications to the human supervisor.  For example, 1) Color-
coded notification panel to visually indicate important events 
with different levels of severity and health warning of the robots 
and assets. 2) Audible alerts or text-to-speech notifications 
to deliver the notification via audio in the case when the user 
cannot look at mobile device and has to work on the job with 
both hands. 3) Vibrations as a subtle way to communicate with 
the human worker. A combination of above method can be 
used, depending on the type of inspections.  

Interaction components support additional functions for 
user to quickly re-configure the robot, handle exceptions, add 
to the inspection plan to collect more data points, etc. For 
example, 1) Quick action bars to support the App setting and 
implementation of major configurations. Additional macro 
functions to control the robots can be used throughout various 
scenarios to allow the fast response to emergent conditions like 
“interrupt and resume” of current task and “go back to home” 
to return home location for battery change. 2) Robot path 
editor to support onsite ad-hoc movement planning for robots 
like UAV flight route update.  

D. Base station components 
The base station sitting on the edge plays the central role 

within our robotic inspection platform. It consists of a variety of 
components to coordinate interactions and communications 
among UAVs, user interfaces, and the cloud services.  

Ground Control Station (GCS) handles the two-way 
communication with UAVs via standard robotics protocols, 
such as ROS [10] or MavLink [11]. On one hand, user requests 
from mobile apps or results from the Analytics Module are 
translated into standard robotics messages and sent to UAVs via 
radio link. On the other hand, parameters and sensor data are 
received from UAVs and pushed to Messaging Bus for further 
consumption.  

Messaging Bus provides the real-time communication 
channel that can be subscribed/published from mobile apps or 
other components in the base station. The different interface 
components, as we described earlier, may subscribe to different 
types of events to support situation awareness in real-time 
monitoring. They may send control commands to the UAVs via 
the messaging bus as well. The messaging service is also 
consumed by other components inside the base station to 

coordinate behaviors. For instance, the Analytics Module 
listens to the sensor data collected from the UAVs, builds the 
online analytics model, then publishes the model parameters 
back to the messaging bus, which is further received by the 
Reporting Module to generate reports and save to the cloud. 

Analytic Module offloads the computing overhead from 
the UAVs to the edge box. It ingests and integrates raw sensor 
data from multiple UAVs and builds the online analytics model 
that is used to dynamically optimize UAV flight path, update 
sampling rate, and coordinate the UAV swarm.  

Cloud Data Broker serves as the broker between the base 
station and the cloud services. It subscribes to the real-time data 
stream from the messaging bus, synthesize it, and periodically 
saves the data to the cloud at the background. In addition, it 
provides the local data persistence layer to provide fault 
tolerance due to unstable Internet connections.  

Context Module provides the context model to capture the 
relevant information for user interaction, and the inference 
engine to reason about the user’s current activity and situation, 
which is consumed by the UI manager to provide UI adaption 
and customization. In the current implementation, the Context 
Module is driven by a Finite State Machine to infer the current 
phase in the inspection process based on a set of UAV and 
environmental variables. In the future work, we plan to 
experiment with more complex context awareness models [15] 
to provide more fine-grained customization capabilities.  

E. Cloud services 
As discussed earlier, assets inspection utilizes a set of cloud 

services to provide information that can be consumed by the user 
interfaces as well as the base station components. In general, we 
summarize them into three categories: 1) Asset Data Services 
are the gateway to existing data repositories of the inspected 
assets themselves. This usually includes the basic asset 
information, historical data regarding its operation and 
inspection schedules. 2) Environment Data Services are 
external services to fetch environmental data, such as weather 
condition, wind direction and speed. This data is critical in UAV 
inspection to optimize the parameters and flight path, as well as 
to adjust the parameters in the analytics model.  3) Reporting 
Data Service is used to store the inspection results to the cloud 
and also allows the mobile apps to retrieve historical reports. 

IV. CASE STUDY: METHANE DETECTION IN OIL FIELD  
In this section, we show how our robotic architecture has 

been used in support of methane leak inspection. Raven [9] is a 
UAV inspection platform developed and funded by Baker 
Hughes, a GE Company (BHGE), with the help of GE Digital 
Research team in San Ramon focusing on UI/UX and system 
architecture.  

Raven uses UAVs to automate the field data collection / 
detection of methane leaks in oil & gas facilities. The use of 
UAVs automates the otherwise labor-intensive task currently 
performed by human inspectors that need to manually inspect 
facilities and pipelines with using optical gas imaging (OGI) 
devices. This method is time-intensive and the data provided by 
the measurement device is qualitative in nature. i.e. it only 
provides a binary (yes/no) indication of leakage with no 
measurement of its intensity. Additionally, the OGI devices are 



expensive and difficult for operators to deploy at-scale. Raven 
replaces this procedure with the process depicted in in Fig. 3. 
 

 
Fig. 3 Workflow for Raven remote methane inspection in oilfield. 

In Step 1 of Fig. 3, the field engineer browses existing oil 
facilities, reviewing past inspection reports and decide which 
one to inspect. Based on the site map and layout, the engineer 
plans the flight route for the UAV to collect methane data and 
detect leaks. Upon arriving at the site in Step 2, the engineer 
reviews the inspection plan and connects the mobile device 
with the UAV via the GCS. Typically, supporting servers and 
GCS are located in the engineer’s truck. Once the mobile device 
connects with the UAV, the inspection plan will be uploaded to 
UAV’s navigation controller. In Step 3, the engineer checks the 
status of UAV before launching it.   

In Step 4, the engineer uses the mobile device to monitor 
the inspection progress, the current methane readings, and the 
status of the UAV. In Step 5, the field engineer can review the 
summary of collected data in statistics and visualization, and 
put in additional remarks about this inspection.  Finally, in Step 
6, a report will be auto-generated and all the data will be 
uploaded to the Cloud Services for further processing and 
archiving.  These 6 steps complete a typical methane inspection 
cycle for Raven.  

A. Methane inspection scenario 
This section shows in detail, the use of Raven methane 

inspection app, hightlighting the main features of the system 
during planning, execution and reporting stages. 

Planning: During inspection planning, the engineer 
browses all the oil facilities registered in the system cloud 
database. Once the site is selected, the user is provided with a 
site map on top of which the plan is constructed. As shown in 
Fig. 4, the inspection plan consists of sequence of geo-located 
way-points. The user adds one way-point at a time by clicking 
on the map and specifying the way-point’s altitude (height), and 
the hoving delay before moving to next way-point. This delay 
translates into the number of sensor data points collected at this 
way-point. The engineer can use finger gestures to move and 
adjust the way-points on the map, which later will be converted 
into GPS coordinates. The way-points can also be generated 
automatically by specifying the area to cover.  

The flight plan is designed in such a way that allows for 
sufficient coverage over the entire facility infrastructure. 
Although there are known higher risk pieces of equipment 

where leaks generally occur, they can be found at any point of 
the system where gas travels. As such, the flight path planning 
is a critical step in the overall process in ensuring that a 
thorough survey is conducted.  Another component in creating 
the flight plan is assessing the appropriate speed of the UAV 
during the survey.  

 

 
Fig. 4  Plan the UAV’s flight route as a sequence of way-points. 

The appropriate speed is dictated by the measurement 
frequency of the sensor. Flying too slow may significantly 
increase survey flight time, resulting in a lower time and cost-
savings to the operator, while flying too fast would result in 
sparse measurement points/data points across the flight path, 
ultimately leading to an inaccurate final output. Because the 
system features a laser-based sensor, it operates by taking an 
average concentration measurement across the length of the 
laser beam. Therefore, flying as low as safely possible is key in 
increasing the overall measurement accuracy. The flight 
altitude is typically governed by the tallest structure on-site, as 
operators generally require that the UAV flies at least 20 feet 
higher than the tallest structure. 
 

 
Fig. 5 Monitor the inspection and review captured data in real time. 



Execution:  During inspection execution, as seen in Fig. 5, 
in the same HMI allows the field engineer to monitor the 
inspection process. The top of the screen shows the situation 
awareness components and the status bar. The status bar 
indicates UAV’s state in the middle banner, along with satellite 
signal, communication signal and battery level. On the top left, 
there are a few buttons for App setting, connecting to the UAV, 
and video streaming from UAV. The heatmap and flight route 
are overlaid on top of the satellite map. The heatmap shows 
color-coded methane concentration based on sensor data. The 
left side of the screen shows some Macro buttons for emergency 
UAV takeover functions.   

The left bottom portion shows more details of the UAV’s 
current status, including coordinates, flight heading, speed and 
climb rate. The right bottom portion shows the environment 
condition like site wind speed and direction. The center bottom 
portion shows status of the methane analytics model. Latest 
methane sensor value is displayed here with colors matched 
with those on the heatmap. The outputs of the analytics model, 
as the parameterization of the probability distribution, are also 
recorded and then uploaded to Cloud Services for archiving. 
The field engineer can also view and archive the live video 
streamed from UAV’s onboard camera. An infrared camera can 
also be utilized to allow the ground user to look at equipment 
thermal signatures, understand its health, and potentially 
identify any malfunctions.  

 

 
Fig. 6  Review report before submitting to Cloud Services. 

Reporting:  Fig. 6 shows one example of Raven reporting 
view on the HMI. At this stage, the UAV has completed the 
inspection plan, with all data collected and analytics model 
parameters ready to be uploaded to Cloud Services. This 
reporting view also includes the summary and extra information 
about the oil facility, UAV’s flight status and weather condition 
during the performed inspection. The engineer can choose to 
add remarks and review the methane data points rendered on 
the map. The engineer can also view the PDF version of the 
same report and, if network connectivity is available, send the 
report to the manager, site maintenance or other interested 

parties. This final reporting view completes one inspection plan 
and the engineer can execute another inspection plan to collect 
further data points or move on to the next site. 

B. Methane sensing and modeling 
An important outcome of the inspection process is a geo-

located heatmap produced by the app. As the UAV is inflight, 
the methane concentration values from the laser-based methane 
sensor are paired with the GPS coordinates. In the HMI, the 
inspector/operator at the ground-level is able to quickly identify 
where potential leaks may be.  While the HMI relies on Google 
Earth imagery as the base layer for planning the initial route, 
the live video feed will point the inspector to the exact location 
of the UAV, so the concentration hotspots are easily 
identifiable. After the flight, all of the collected data are 
processed into a high-resolution heatmap, e.g., see Fig. 7.  

Additionally, during post-flight processing, the collected 
imagery is converted into a new/updated 2D image of the 
facility. This allows for more accurate leak localization to be 
conducted. Because of the standardized approach put in-place 
by regulatory agencies (EPA and others), it is critical for newly 
developed leak detection technologies to accurately determine 
both leak location and leak rate. 

 

 
Fig. 7 Post-flight high-resolution methane concentration heat map. 

Because the atmospheric methane plumes are significantly 
altered by wind dynamics, dispersion modeling is necessary in 
order to trace the detected plumes back to their sources on the 
ground. For this analysis, weather condition data is necessary. 
To capture higher granularity of weather conditions during the 
inspection, an external weather station is placed on-site and 
captures wind speed, wind direction, and temperature 
measurements at 4Hz. The geotagged methane data is fused 
with the weather station data to perform inverse dispersion 
modeling.  Additionally, within a CFD simulation environment, 
individual leak rates may be estimated.   

At the conclusion of the inverse dispersion modeling 
analysis, a high-resolution concentration heatmap is generated 
and overlaid onto the facility image.  This heatmap indicates the 



origin of the detected leaks with a higher degree of confidence. 
While a 2D heatmap is provided in HMI immediately after the 
flight, it typically takes hours to run the dispersion analytics and 
output the high precision heatmap due to the intensive 
computing involved. 

C. Design trade-offs and implementation details 
The lack of network connectivity, and limitations in 

processing power lead us to adopt different design decisions in 
the implementation of Raven system. The lack of connectivity 
made us move processing to the drone and to the base station. 
Connectivity with the cloud, however, is still required for 
sharing report results, for accessing historical data, and for 
obtaining information such as weather, and the map itself.  

Real-time video was particularly challenging as it requires 
high bandwidth, which can interfere with drone controls 
responsiveness. The solution to the problem was to separate 
video from controls, using independent communication 
channels. The base station is important as a central point for 
data gathering and for controlling and coordinating the activity 
of multiple UAVs. As much as possible, sensor summarization 
is done in the UAV, having only small data transmitted between 
UAV and base station during inspection. This optimization is 
supported by a dedicated UAV on-board computer. 

The HMI components and mobile apps are implemented in 
using Cordova/Ionic framework [13] based on JavaScript, 
which allows the porting the application to different mobile 
platforms including: iOS, Android and Web browser. The base 
station services are implemented as Docker [16] containers. In 
particular, Redis [17] Pub/Sub messaging bus is used to handle 
the communication between components and UAV. The 
messaging bus exposes WebSockets and REST API interfaces 
for client-side communication. The Ground Control Station 
communicate with the UAV using an open source MavLink 
implementation called MavProxy [18].  

The Analytics module uses the 2D Gaussian Process [19] 
to model the methane distribution. The context module and 
reporting module are written in Node.js [20], due to the need 
for efficient non-blocking I/O model. The container-based 
architecture allows for easy scaling of the base station from a 
micro-controller in prototyping to a more powerful PC when 
analytics module was introduced, and eventually to a cluster 
when UAV swarm is supported.  

V. CONCLUSIONS 
Semi-autonomous robotic inspection system is a special 

case of Edge Computing that requires an orchestration of the 
robotic autonomy, task planning, and real-time controls 
involving cloud, edge services and proper HMI for human 
supervision and emergency takeover. In this paper, we outline 
the functional requirements for the planning, execution, and 
reporting stages, as well as non-functional requirements for 
human-in-the-loop industrial robotic inspection systems. We 
present our design and current implementation, showing how it 
has been used in the inspection and detection of methane leaks 
in industrial oilfield facilities. This UAV inspection system 
provides higher resolution and accuracy if compared to the 

existing manual inspection process based on hand-held optical 
gas imaging devices. It produces more precise heatmaps and 
automates the reporting and data sharing processes. We 
envision this specific kind of Edge Computing in industrial 
applications to gain popularity in coming years. 
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