Research Statement

Roberto Silveira Silva Filho
http://www.ics.uci.edu/~rsilvafi

My research so far has focused on the synergdtitiameship between Groupware, Middleware and Saftwa
Engineering. As computing becomes increasingly wibigs, new collaborative tools and applications ar
created. These applications require novel softvarastructures, or Middleware, that are able tppswt and
evolve with the constant shift of networking anglégation domain requirements. Novel Software Epgiing
fundaments and techniques are also required inosub these applications and infrastructures. Agmn
thread in my research has been the developmewilaborative tools and their supporting infrasttwes, and the
multi-dimensional evaluation of the trade-offs itwaxl in their design, development and use. In paldr, | focus
on both end-users and developers, researchingof@l isoftware engineering principles and guidelities can
better support their activities.

My Ph.D. work at UC, Irvine, was motivated by thnereasing popularity of event-driven applicatiomsl a
their need for application-specific features. Imtigalar, | worked with applications in differenteas including:
usability monitoring [1], security [2], workspacenvareness [3] and contextual collaboration [4]. Ehes
applications usually rely on custom-made publidbgstibe infrastructures, developed to meet the@cidic
needs. This observation resulted in my work on YARS, a versatile publish/subscribe infrastructbieljased
on plug-ins and extensible languages, that carxtenéed and customized to meet the requiremengxisfing
and novel applications. By using YANCEES, applicatspecific infrastructures can be built througke th
composition of new and existing components, thumnicantly reducing the development effort of new
publish/subscribe infrastructures, at the same tima¢ better support application developers, tlaat @ly on
infrastructures that better match their applicatieeds.

ADDING VERSATILITY TO PUBLISH/SUBSCRIBE INFRASTRUCUDES

Supporting publish/subscribe ver satility. My experience in the development of YANCEES prasunportant
insights on how to support versatility in this domgg]. First, it showed the benefits of supportiextensibility

and configurability along publish/subscribe domamain concerns. Second, it made evident the need for
generalization, instead of variation, as the pedfkr approach to represent events, and automatioenforce
automatically allocate plug-ins, at runtime, eniogctheir interdependencies. Third, it showed tleadiits of
separating maintenance and regular publish/sulescAPls, on the overall usability and reuse of the
infrastructure.

Analysis of YANCEES development challenges. Even though YANCEES was successful in supportiatih b
existing and novel applications, its developmegethdifferent challenges. The first challenge Waeslack of
orthogonality between the publish/subscribe variability dimensions. These dimensions have implicit control
and data dependencies that hinder their indeperd®@hition [7]. As a result, special measures toudeent and
enforce these dependencies are required such ass¢hef configuration automatic managers and thmicitx
declaration of dependencies in configuration filés.side effect is the increase of the complexity thé
infrastructure as a whole. Note thélhese dependencies are not a consequence of the variability
implementation approach adopted, but are essential to the problem domain. Second, due to implicit control
and data dependencies in different variability ienpéntation approaches (for e.g. plug-ins, filtadgpters, etc),
the combined use of apparently compatible featorag lead tdfeature interaction. Third, theinadequacy of
programming interfaces to document and enforce all the implicit dependencies and contracts make it
difficult for application developers to learn, owmstize, extend and debug the infrastructure. Inféionasuch as
with what other plug-ins, timing guarantees, anenéformats are plug-ins compatible with; or whalts impact
of configuring and extending one feature, are radyeto grasp. Finally, the implementation of concely
simple features usually crosscuts different plug-ins and configuration files. This lack of locality results in

Pagelof4

Roberto S. Silva Filho http://www.ics.uci.edu/~rsilvafi

extra cognitive effort for application developetstt need to guarantee the coherent extension Gdretit
artifacts. In order to address some of these issaesiplex configuration management and architecture
documentation schemas were developed [8].

EMPIRICAL ANALYSIS OF VERSATILITY TRADE-OFFS IN
PUBLISH/SUBSCRIBE INFRASTRUCTURES

The different problems faced in the developmentANCEES, and the existence of other, more tradétion
versatility approaches, motivated my Ph.D. dissertawork [9], which addresses the following keyegtions
about the development and use of versatile publigiscribe infrastructures: (1) How versatile arésteng
publish/subscribe infrastructures? (2) Do they fdmesame issues found in the development of YANEER)
What are the common factors that hinder the devedop of versatile publish/subscribe infrastruct@réf What
trade-offs should developers and users considemwhelding, evolving and reusing these infrastrues®
Answering these questions is a key step towardsawapg the development of versatile infrastructunes
general. It also provides insights in the form dhgiples and guidelines that can better suppdragtructure
developers in building more versatile infrastruegjrand application engineers in selecting the rnghdleware
for their needs.

Comparing the versatility of existing publish/subscribe infrastructures. In order to answer these questions, |
performed a multi-dimensional qualitative and quative analysis. This empirical study involved fdient
publish/subscribe infrastructures, case studiesnagtdics. First, | selected a set of open-sourdsighisubscribe
infrastructures representing major versatility gées: minimal core APIs (Siena), one-size-fils(@IORBA-
NS), coordination languages (JavaSpaces) and ligexibimposition approaches (YANCEES). Next, | seédct
three heterogeneous application domains: usabilibyitoring, peer-to-peer file sharing, and awarend$e
requirements of each application domain were attsflain the form of ideal publish/subscribe APIs
infrastructures must provide. The selected inftastires were then adapted to match these API emaints
according to three different approaches: (a) blawk, where code was built around the infrastructuead (b)
grey-box, this last one only supported by YANCEE®} was extended and configured along its vangtiaints.
Finally, | measured the reusability, maintainapjlifiexibility, usability, and performance of eaatfrastructure,
for each case study, using an extended metrios kaieated.

Analyzing the versatility trade-offs of existing publish/subscribe infrastructures. The analysis of versatility
trade-offs revealed a set of costs and benefiggolf versatility approach studied:

1. Minimal core APIs as Siena are efficient, have simple APIs and astee to build than one-size-fits-all
infrastructures. These infrastructures are reuselying functionality on top of them. Through thee of
generalized subscription and event representatibey, can support a large set of application domadim
spite of these benefits, their core functionaliyinflexible (not easily configurable or extens)bleeing
limited by the generalized (but fixed) event, sulpion and notification capabilities they provid€his
approach supports black-box reuse, which resultigher middleware and adaptation costs if comp#&wed
flexible approaches as YANCEES.

2. Coordination languages as JavaSpaces have the similar generalization itenef minimal core
infrastructures. In the particular case of Java8pawe found problems with semantic and performance
mismatches, a consequence of the inflexibilityhaf €vent (tuple space) and notification models wégpect
to filtering capability and pull notification poljc

3. Onesizefitsall infrastructures as CORBA-NS support a large set of features throsphcialized
variability and configurability. In this approaclepnfigurability is delegated to application develop
through programmatic interfaces (for example: fdety configuration methods, and composition). This
manual configurability decreases the overall systesability. This can also impact performance sitiwe
most common features end up paying the price ettra features supported.

4. Flexible approaches as YANCEES may imply, in some cases, in more cemypengthy and componentized
code. This is a consequence of the generalizatidrsaparation of concerns these systems provideettsr,

Research Statement Page2of 4

Roberto S. Silva Filho http://www.ics.uci.edu/~rsilvafi

the resulting code is usually more modular (mairethie) and reusable. Moreover, the ability to cmite the
infrastructure to the application domain requiretaenreduces the abstraction distance between thereeq
and provided functionality, reducing the clientesidevelopment effort to build applications basedttoa
infrastructure.

FUTURE RESEARCH

My vision is to help both infrastructure developarsl users in designing, reusing, and evolvingaboltative
software infrastructures. From my experience indbeelopment of YANCEES and the analysis of velibati
trade-offs | conducted as part of my Ph.D. dissierial identified main research topics discussedbiows.

Code-based software architecture documentation and enforcement. Even though different design and
implementation approaches exist to support theldpmeent of versatile software (for example, sofvaroduct
line engineering, component models, plug-ins, fraorés, and many others), the process of desigriuten
and reuse of software developed according to thppeaches is still costly and error prone. A commmblem
faced by users of versatile software in generttiésunderstanding of the architectural rules atidrrale used in
their design. These assumptions are not alwaysndected and not easily enforceable by existing tobte
result is architectural drift, steep learning c;vand errors driven by hidden dependencies betapparently
unrelated parts of the code. In other words, tleaking of these rules are a constant threat t@itigitectural
integrity, and over time erode the non-functionaperties such as flexibility, maintainability, werdtandability
and performance. In particular, there is a lackisdble and useful approaches to capture, reprasdnenforce
architectural invariants in the code. By architeaftunvariants | mean assumptions and rules thastnbe
followed in order to extend, adapt or maintain¢bee without breaking its original architecturabperties.

The solution to this problem requires the gatheahgtherwise hidden, scattered information, tlegiforcement
and presentation in meaningful ways to softwareeltgers thus supporting their activity at hand. &twer,
many times, this information is tacit, not writtenany documentation form, but is part of the efiperof few
developers, which makes it event difficult to laatombine and present this information. In thieegch, | plan
on answering the following questions: What kinciathitectural invariants and context do developeed? How
can this information be gathered, presented andregd? Can we derive usable and useful ways taiegpt
document, present and enforce this information? Hamwe support tacit knowledge capturing, représgand
sharing? | believe that the approach must supporeldpers in the code level, being integrated witfsting
IDEs and compilers.

In line with this research, I've been working orvabapproaches to aspect-oriented programs undeistaand
evolution [10]. In this project, aspect code thstially resides in different files, is automaticaligaved together
with base code, and kept consistent with the progtaough a relational model. This strategy nolyyaupports
program comprehension, but also improves the eeolind debugging of both base and aspect cogdsn lon
broadening the scope of this research to suppertcttmprehension and evolution of other programming
paradigms such as Object-Oriented programmingdtivess problems such as the fragile base-classeptol
also plan on integrating the tool with differentfdmmation sources in support for context in sofevar
comprehension and evolution.

API usability metrics, guidelines and tool support. Application Programming Interfaces (or APIs) defin
reusable abstractions applied in the constructibrtamplex software systems. They not only suppbd t
management of software complexity, but also workbasndaries between relatively independent software
development teams. In spite of their importancey litle research has been done on the desigreaaldiation of
APIs. In my dissertation work, the size of the ARI&l the number of concerns API users need to mastave
shown to be an important factor in the total effoftadapting, extending and configuring an infrasture.
Another important off-spring of my dissertation waset of metrics and a tool to automatically daleuAPI
size. This particular work has been part of a baltation with professor Cleidson de Souza from ©rsity of
Para, Brazil. In this research, | plan on answethm®following questions: What is a good API? Hoan ave

Research Statement Page 3 0f 4

Roberto S. Silva Filho http://www.ics.uci.edu/~rsilvafi

adequately measure API usability? What's the impa&ound software engineering approaches in thgltheg
API usability? Can we develop better principlesdglines and tools to better support the developrogAPIs?

Awareness in collaboration. One of the main themes of my research has beeradegquate support for
collaboration by leveraging on awareness and eswen infrastructures and integration of informatifrom
different sources. In projects such as Continuoosrdination in distributed software engineering Egjd
awareness-based security [2] | searched for evidend the effectiveness of exposing otherwise hidde
inaccessible information in support for more effeztcoordination. | would like to continue my cdilaration
with professor David Redmiles in the study of catrand novel applications of awareness such akbwmrhtive
software engineering, software versatility and coghpnsion. In particular, | plan to investigate fhkowing
research questions: Can we leverage on knowledaftesed throughout different artifacts, or the etipe of
different stakeholder, in support of better sofwvangineering approaches? What kind of infrastrecsupport
should be provided?

SELECTED REFERENCES

[1] D. Hilbert and D. Redmiles, "An Approach to barscale Collection of Application Usage Data other Internet," presented at 20th International
Conference on Software Engineering (ICSE '98), Kydapan, 1998.

[2] R. DePaula, X. Ding, P. Dourish, K. Nies, Bli€j D. Redmiles, J. Ren, J. Rode, and R. S. Sillieo, "In the Eye of the Beholder: A Visualizatio
based Approach to Information System Securitytérnational Journal of Human-Computer Studies - Special Issue on HCI Research in Privacy and
Security, vol. 63, pp. 5-24, 2005.

[3] D. Redmiles, A. van der Hoek, B. Al-Ani, T. idénbrand, S. Quirk, A. Sarma, R. S. Silva Filho,d€. Souza, and E. Trainer, "Continuous
Coordination: A New Paradigm to Support Globallystbbuted Software Development Project8\frtschaftsinformatik (Special Issue on the
Industrialization of Software Development), vol. 49, 2007.

[4] R.S. Silva Filho, W. Geyer, B. Brownholtz,Guy, D. F. Redmiles, and D. R. Millen, "Architedufirade-Offs for Collaboration Services Supporting
Contextual Collaboration - RC23756," IBM T. J. WatsCambridge, MA RC23756, 2005.

[5] R.S. Silva Filho, C. R. B. de Souza, and DREdmiles, "The Design of a Configurable, Exteresénhd Dynamic Notification Service," presented at
International Workshop on Distributed Event Syst¢BEBS'03), San Diego, CA, 2003.

[6] R.S. Silva Filho and D. Redmiles, "Striving fdersatility in Publish/Subscribe Infrastructutgsresented at 5th International Workshop on Saféwa
Engineering and Middleware (SEM'2005), co-locatétth & SEC/FSE'05 Conference, Lisbon, Portugal, 2005.

[7]1 R.S. Silva Filho and D. F. Redmiles, "Towathe use of Dependencies to Manage Variability iftv@re Product Lines," presented at Workshop on
Managing Variability for Software Product LinesP(SC'2006), Baltimore, MD, 2006.

[8] R. S. Silva Filho and D. F. Redmiles, "ManagiRgature Interaction by Documenting and Enforcirep&ndencies in Software Product Lines,"
presented at 9th International Conference on Featteraction, Grenoble, France, 2007.

[9] R. S. Silva Filho and D. F. Redmiles, "An Ansily of Publish/Subscribe Middleware Versatilitygsiitute for Software Research, Irvine, CA UCI-
ISR-09-3, August 2009.

[10] W. Ruengmee, R. S. Silva Filho, S. K. Bajragha D. F. Redmiles, and C. V. Lopes, "XE (eXtrefaitor) - Bridging the Aspect-Oriented
Programming Usability Gap," presented at Autom&eftware Engineering, 2008. ASE 2008. 23rd IEEE/ARérnational Conference on, 2008.

Research Statement Page 4 of 4

